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Sums of Sinusoids 

• We have seen that adding two 
sinusoids with the same frequency 
results in another sinusoid with the 
same frequency. 

• Consider adding sinusoids with different 
frequencies: 
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Sum in Phasor Form 

• Can also express sum as: 
 
 
 

• Or via Euler: 
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Positive and Negative Freqs 

• Interpret sinusoidal sum as two-sided, 
with pairs of rotating phasors, one 
positive frequency fk and one negative 
frequency -fk  
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Frequency Domain 
Representation 

• Represent x(t) in frequency domain 
using mag&phase @ f: 
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Products of Sinusoids 
• The sum of two sinusoids contains only those two sinusoidal 

frequencies.  What about multiplying two sinusoids? 
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Product (cont.) 

• Note that the product can be expressed 
as frequency sum and frequency 
difference components. 

• Or conversely, a pair of frequency 
components can be expressed as a 
product, as in amplitude modulation. 
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Periodic Waveforms 

• Periodic complicated waveforms can be 
expressed as harmonic sums. 
 
 

• The period of the signal is T0=1/f0.  This 
is called the fundamental frequency or 
fundamental period. 
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Fourier Analysis 

• What if we have a periodic signal and 
we want to figure out the Xk values 
(magnitude and phase)? 
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Fourier example:  square 
wave 
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Square wave (cont.) 

• Note:  only odd harmonics are present 
• Note:  harmonics decline as 1/k 
• Note:  phase from 1/j = -j implies –π/2, and 

sin(θ) = cos(θ-π/2) 
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Time-varying Amp and Freq 

• What if we allow amplitude and 
frequency to vary as functions of time? 
 
 

• The instantaneous frequency is the time 
derivative of the phase function ψ(t): 
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Time varying (cont.) 

• Instantaneous frequency is the slope of 
the phase function 

• Example:  constant frequency 
 
 

• Example:  linearly increasing frequency 
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Time Varying (cont.) 

• Since amplitude and frequency vary 
with time, we want to estimate short-
time spectrum. 

• Concept:  perform a series of Fourier 
“snap shots” for short segments of the 
signal 

• This is known as a short-time Fourier 
transform, or a spectrogram 
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An aside:  musical frequencies 

• Music is often based on harmonic signals 
with nice “consonant” relationships 

• Western music uses an octave (factor of 2) 
basis with a scale of 12 notes per octave. 

• Modern music has an equal-tempered scale 
such that adjacent notes have the same 
frequency ratio:    r = 21/12 = 1.059463 

 (note m in the scale has fm = f0 * 2m/12) 
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Musical Scale 

A = 440 Hz = reference C = 440(2-9/12)= 261.62 Hz 

Frequency 

Time 

Harmonics 
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