EELE 217 Fall 2017

Example of Sabine reverberation time calculation

Consider a rectangular room with floor dimensions 15m x 20m and a ceiling height of 4m.

For this example, let's assume that the floor material has absorptivity a = 0.2, ceiling a = 0.4, and wall material has a = 0.6.

<u>Volume</u> of the room is: L x W x H = 15 x 20 x 4 m³ = <u>1200 m³</u>

There are six surfaces:

Floor area = $15x20 = 300 \text{ m}^2$ Ceiling area = $15x20 = 300 \text{ m}^2$ Front and back walls = $15x4 = 60 \text{ m}^2$ each Side walls = $20 \text{ x} 4 = 80 \text{ m}^2$ each

The Sabine formula is:

$$T_{60} = \frac{0.161V}{\sum_{i} S_{i} a_{i}}$$

V = total volume in m³ $S_i =$ area of surface *i* in m² $a_i =$ absorptivity of surface *i*

Thus, the <u>numerator</u> becomes $0.161 V = 0.161 \times 1200 = 193.2$

The denominator is the sum of each surface area times its absorptivity:

Floor: $300 \ge 0.2 = 60$ Ceiling: $300 \ge 0.4 = 120$ Front: $60 \ge 0.6 = 36$ Back: $60 \ge 0.6 = 36$ Side1: $80 \ge 0.6 = 48$ Side2: $80 \ge 0.6 = 48$

<u>Sum in denominator</u> = 348

So the estimated T_{60} for this example room is 193.2 / 348 = 0.56 seconds