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Discrete Fourier Transform
(DFT)

•The DFT provides uniformly spaced
samples of the Discrete-Time Fourier
Transform (DTFT)

•DFT definition:

•Requires N2 complex multiplies and N(N-1)
complex additions
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Faster DFT computation?
• Take advantage of the symmetry and periodicity

of the complex exponential (with WN=e-j2π/N):
– symmetry:
– periodicity:

• Note that two length N/2 DFTs take less
computation than one length N DFT:  2(N/2)2<N2

• Algorithms that exploit computational savings are
collectively called Fast Fourier Transforms
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Decimation-in-Time Algorithm
•Consider expressing DFT with even and

odd input samples:
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DIT Algorithm (cont.)
• Result is the sum of two N/2 length DFTs

• Then repeat decomposition of N/2 to N/4 DFTs, etc.
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Detail of “Butterfly”

•Cross feed of G[k] and H[k] in flow
diagram is called a “butterfly”, due to shape
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8-point DFT Diagram
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Computation on DSP

•Input and Output data
–Real data in X memory
–Imaginary data in Y memory

•Coefficients (“twiddle”factors)
– cos(real) values in X memory
– sin(imag) values in Y memory

•Inverse computed with exponent sign
change and 1/N scaling


