A Brief Introduction to Musical Acoustics

EE477 R.C. Maher Spring 2006

Harmonic and Inharmonic Sounds

- Musical instruments with simple oscillators usually produce periodic waveforms
- Periodic waveforms have a fundamental frequency, f₀, and a *harmonic* spectrum: spectral energy just at frequencies that are integer multiples of f₀.
- These harmonic components are called harmonics, overtones, or partials.
- Some musical instruments produce inharmonic sounds: bells, drums, etc.

Pitch

- Musical sounds often have a pitch that is related to the sound's spectral content
- The pitch of a harmonic sound is usually close to the fundamental frequency of that sound
- Inharmonic sounds may have a perceived pitch, but it is not merely the fundamental of some harmonic series

Organization of Western Music

- Two harmonic sounds with different fundamental frequencies can lead to interesting frequency coincidences among their partials
- When the fundamentals have a low integer ratio relationship, this is a consonant interval

Consonant Intervals

Unison	3 rd	4 th	5 th	Octave
1/1	5/4	4/3	3/2	2/1
100	125	133.33	150	200
200	250	266.67	300	400
300	375	400	450	600
400	500	533.33	600	800
500	625	666.67	750	1000
600	750	800	900	1200
700	875	933.33	1050	1400
800	1000	1066.67	1200	1600
900	1125	1200	1350	1800
1000	1250	1333.33	1500	2000
1100	1375	1466.67	1650	2200
1200	1500	1600	1800	2400
1300	1625	1733.33	1950	2600
1400	1750	1866.67	2100	2800
1500	1875	2000	2250	3000
1600	2000	2133.33	2400	3200

Musical Scales and Temperament

- European music is based on the notion of a diatonic pitch scale. The scale specifies the allowable musical pitches: 8 scale steps out of 12.
- Problem: if integer frequency ratios are used (*Just* intonation), chords only sound in tune if based on fundamental (*tonic*) pitch. Changing musical "key" is not possible.

Equal Tempered Scale

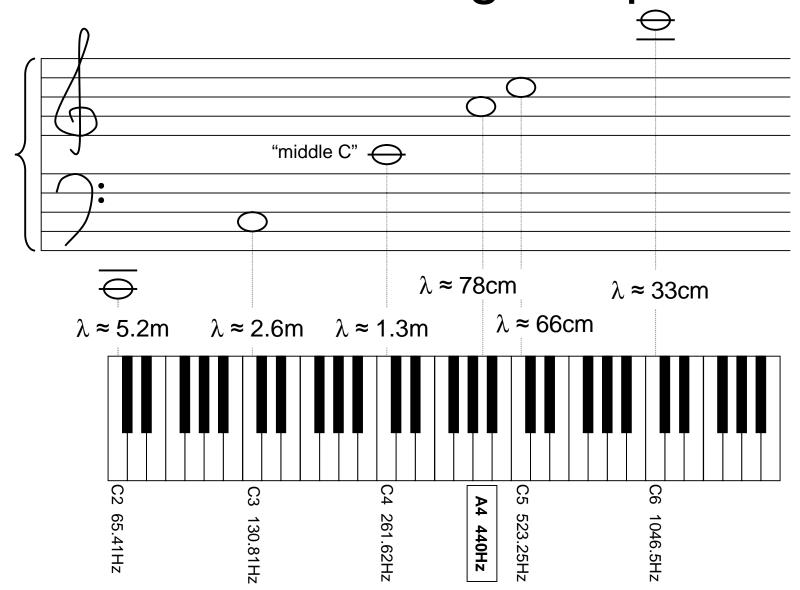
- To solve the musical "key" problem, keyboard instruments now use equaltempered tuning.
- Note frequencies are distributed uniformly in a logarithmic span:

$$f_n = f_0 \times 2^{n/12}$$

Just vs. equal tempered tuning:

Unison	3^{rd}	4 th	5 th	Octave
100	7 '	133.3333	<i>(</i> '	<i>7</i> '
100	125.9921	133.4840	149.8307	200.0000

Rhythm


- Beats per minute
- Beats per measure (time signature)
- Duration of musical notes specified in fractions:
 - whole, half, quarter, eighth, sixteenth, 32nd

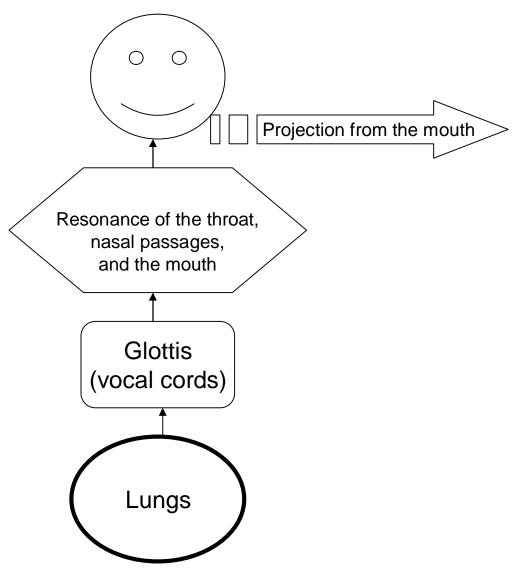
Musical Notation

- Notation specifies pitches, durations, and time evolution
- Representation is like a spectrogram: frequency vs. time

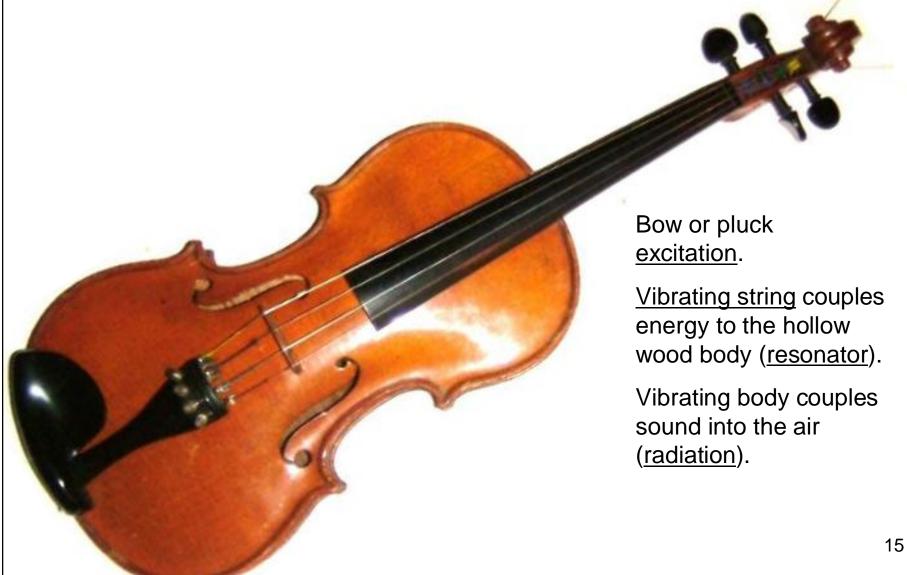
Standard Tuning Frequencies

Musical Timbre

- The relative spectral energy at different frequencies is perceived as a distinct tone color, or timbre (pronounced as either tam--burr or tim-burr)
- Timbre: The combination of qualities of a sound that distinguishes it from other sounds of the same pitch and volume


Musical Instruments

- Almost any object can be considered a musical instrument
- Most conventional musical instruments have
 - an excitation source
 - a vibrating element
 - a resonant body
 - a means of coupling the vibrations so that they radiate into the air as sound waves


Musical Instruments (cont.)

- The excitation is a motive force
- The vibrating element usually creates many harmonics
- The resonant body emphasizes some frequencies and deemphasizes others
- The coupling means takes energy from the vibrating element and "loses" it (radiates) into an acoustical wave through the air

Example: Singing Voice

