
ECEN4002/5002 Digital Signal Processing Laboratory
Spring 2002

Laboratory Exercise #4

IIR Filters and Equalizers

Introduction
Previously (in Lab #2) you worked with the design and implementation of an FIR filter. Then in Lab #3
you experimented with some elementary IIR structures for recirculating delays and comb reverberators. In
this exercise you will use the tools and skills from the previous labs to design, implement, and test some
more complicated IIR digital filters. The first exercise will be to implement and test a high-order IIR filter
made from a cascade of second-order sections. MATLAB is used to select the filter coefficients, which are
then included in the 56300 filter implementation. The second exercise is to implement a bandpass
parametric EQ filter, and to test and verify its behavior.

Design and implementation of IIR filters
IIR filters have transfer functions of the form

∑

∑
−

=

−

−

=

−

+
=

1

1

1

0

1
)(

N

k

k
k

M

k

k
k

za

zb
zH ,

which is a ratio of two polynomials, and it is assumed that M≤N. Unlike FIR filters, IIR filters can have
both zeros and poles. This means that IIR filters are not guaranteed to be stable: the poles must be inside
the unit circle in the z-plane for stability. However, we can more easily approximate a desired spectrum
with an IIR filter than with a FIR filter due to the transfer function flexibility of having both poles and
zeros to manipulate. Consequently, the computation load for an IIR filter tends to be smaller than with an
equivalent FIR filter when implementing an arbitrary frequency response function.

Like the FIR filter, there are many ways to design an IIR filter. However, due to the rational structure of
the IIR filter expression, we can easily approximate the design from an analog prototype filter. This is the
method that we will use for this class. Given a set of filter specifications, we obtain a continuous-time filter
approximation, Hd(s), to the desired spectrum. The analog design Hd(s) is then transformed to obtain the
digital filter H(z). There are several methods for doing this transformation, and we will consider the
bilinear transform method for this experiment.

The essential idea behind the bilinear transform method is to construct a digital filter H(z) for which

() ()()ωω Ω= jHeH d
j . The function Ω(ω) is a nonlinear frequency warping function that is used to

map the discrete-time frequency ω (-π≤ω≤π), to the entire continuous-time frequency range -∞ to ∞.
Specifically, if Ω() is chosen to increase monotonically from -∞ to ∞ as ω increases from -π to π then the
mapping will warp the entire jω axis in the s-plane to the unit circle in the z-plane, and the entire left half of
the s-plane to the inside of the unit circle in the z-plane. Such a warping function ensures that a stable
discrete-time filter maps to and from a stable continuous-time filter. This allows us to start with the desired
digital filter specifications, use the bilinear transform to map the design specs to the analog domain, choose
an analog filter that meets the specs, then transform the design back into a digital transfer function.

ECEN4002/5002 DSP Lab #4 2

Z-1

Z-1

+

b0

b1

b2

x[n]

x[n-1]

y[n]

x[n-2]

Z-1

Z-1

-a1

-a2

y[n-1]

y[n-2]

The desired warping properties can be achieved by a transformation z=ψ(s), where

s

s
sz

−
+==

1

1
)(ψ .

Note in particular that this transformation maps the origin of the s-plane to z=1, and as jω→∞, z→ -1.

The inverse transformation is

1

1
)(1

+
−== −

z

z
zs ψ .

The frequency warping function is obtained by setting z=ejω, and is

()
()

==Ω

2
tan

2cos

2sin ω
ω
ω

jjj .

For this lab you will use IIR design tools from the MATLAB Signal Processing Toolbox, so it will not be
necessary to manipulate the bilinear transform directly. Nevertheless, it is useful to keep in mind how the
frequency warping process will map digital filter characteristics between the continuous and discrete
domains.

The usual engineering design method is to specify the filter first, and then select the analog filter type that
will best satisfy our requirements. Next we choose the corresponding tool in MATLAB and calculate the
filter’s poles and zeros. This leads to the final question of this section: how should we implement IIR
filters?

We will begin by assuming that our IIR filter is only a second order filter, which can be stated as

2
2

1
1

2
2

1
10

1
)(−−

−−

++
++=

zaza

zbzbb
zH .

The 2nd-order expression is sometimes called a biquadratic formula, or just a “biquad” for short. Using the
linear system property that Y(z)=H(z)X(z) we can write a difference equation using the inverse z-transform
in terms of the filter coefficients and data,

]2[]1[]2[]1[][][21210 −−−−−+−+= nyanyanxbnxbnxbny .

The difference equation leads directly to the block diagram shown in Figure 1.

Figure 1: Implementation of 2nd-order difference equation (Direct Form I).

ECEN4002/5002 DSP Lab #4 3

By breaking the central summation into two separate summers, one for the feed-forward terms and the
other for the feedback terms, exchanging the order of the summation blocks—which is OK since the blocks
are linear and time-invariant—and then combining the now adjacent matching delay elements, an
alternative structure can be formed, as shown in Figure 2. There are numerous other structures for IIR
implementations, but those will be left for a filter theory course.

Figure 2: Direct Form II implementation of 2nd-order difference equation.

The sensitivity of a digital filter to coefficient approximation is similar to the need to deal with component
tolerance in analog filters, and this sensitivity can be reduced by separating a high-order polynomial
expression into a sum or cascade of lower-order sections. For this reason the implementation of IIR filters
is almost always done with second order sections.

When the required filter order is greater than two, we factor the high-order numerator and denominator
polynomials into second order polynomials, which is easily accomplished with knowledge of the filter’s
poles and zeros (look at the MATLAB roots and poly functions). Naturally, if the filter has even order,
then we can build the filter with an integer number of cascaded second order sections. If the filter has odd
order, then we need to add one more first order section making use of the relation

]1[]1[][][110 −−−+= nyanxbnxbny .

Exercise A: IIR filters
For this exercise you will use some MATLAB functions to select a set of IIR digital filter coefficients, then
use the coefficients in a filter implemented on the 5630x. We will use the butter function (Butterworth
analog prototype) to design the filter, the scope function to examine the poles and zeros, and then a
function iirtable to create an assembler-compatible text file (like you did with firtable in Lab #2).
The butter function is part of the Toolbox, and the iirtable and scope functions are on the course
web site along with several ancillary .m files. Remember, be smart about the way you develop your code.
Start with just the 2nd order building block, debug everything, then extend to the higher-order version.

Part 1: IIR Butterworth lowpass filter, 8th order, 2.5kHz cutoff frequency

fs=48000; fc=2500;
[b,a]=butter(8,2*fc/fs);
scope(b,a,fs)
iirtable(b,a,’z:iirp1’)

The MATLAB function scope produces two figures that may be used to verify the design and
implementation of the filter. The function iirtable generates a highly-structured assembler version of
the IIR filter description. The file produced by iirtable includes coefficients that have been scaled to

b0

b1

b2

x[n] y[n]

-a1

-a2

Z-1

+

+

Z-1

ECEN4002/5002 DSP Lab #4 4

reduce the likelihood of overflow in the internal state of the filter. Review the structure of the output file
carefully: your IIR filter implementation on the 5630x must use this data format directly! Use a Direct
Form I implementation.

Since the coefficients of the digital filter must be between –1 and +1 in order to be compatible with the
56300 fractional representation, we often have a problem with the linear term of the 2nd-order polynomial,
which is greater than 1. The iirtable function takes care of the numerator by scaling down each of the
coefficients by the same factor, and the denominator is handled by dividing each of the coefficients by 2.
Note that the output of iirtable stores a2/2 and a1/2. So, after doing the multiply-accumulate for the
denominator coefficients, be sure to do a left arithmetic shift to compensate for the coefficients being
divided by two. In other words, the coefficients are divided by 2, so the mac result must be multiplied by 2
to get the correct denominator value.

Incidentally, the 56300 has a feature that allows a program to use the coefficients divided by 2, then
automatically scale up the product (left shift) in the hardware when the result is read out of the
accumulator. This uses the scaling mode bits in the “mode” portion (MR) of the status register. Look at
the 56300 Family Documentation (chapter 5) to see how this is done, if you are interested.

Use the non-real time file i/o method to verify that your filter implements the desired response. Apply a
unit pulse, record the output, and compare to the expected response shown by the scope program. Try
applying a sinusoidal input with an interesting frequency. Note any overflow or any other unexpected
behavior. Reduce the amplitude of your input signal if necessary.

Now run your filter in real time with mono input/output. Carefully measure the frequency response on a
uniform logarithmic scale (20, 50, 100, 200, 500, 1000, …) and plot the results in Bode form (gain in dB on
vertical axis, frequency in log scale on horizontal axis).

Finally, now that everything is working, consider how you could optimize your IIR filter (fewer
instructions, more parallel moves, less memory, etc.) Try some of your optimizations (save a copy of your
working file first!) and re-verify the results.

Part 2: IIR Butterworth bandpass filter, 10th order, 3kHz to 8kHz passband.

Now use the butter function to design a 10th order Butterworth bandpass filter. Read the MATLAB help
for butter to see how the bandpass is specified.

Obtain the unit sample response using the file I/O method, then run in real time and verify the results as in
Part 1.

Additional exercise for Graduate Students:

Design another 8th-order lowpass filter, but this time use an elliptic filter with 2.5kHz cutoff frequency.
See the MATLAB ellip function. You can allow 0.5dB of ripple in the passband, and the stopband
attenuation should be 60dB. Compare the frequency response of this filter with the Butterworth design
from Part 1, and discuss the differences.

A parametric EQ filter
A common feature of audio recording and reproduction systems is frequency equalization, or EQ for short.
EQ systems can come in several different forms, ranging from simple “tone” controls (low frequency or
high frequency boost/cut), to graphic equalizers with multiple bandpass filters, and to parametric EQs with
independently adjustable center frequency, bandwidth, and boost/cut. In this section a particular type of
bandpass parametric EQ filter is considered.

ECEN4002/5002 DSP Lab #4 5

+

A(z)

K/2

+

+

1/2

+

-

+

+

EQ filters are typically variable filters, meaning that the user will want a “knob” or the software equivalent
to make subjective adjustments to the filter settings. It is generally impractical to make a variable filter by
recalculating all the coefficients in an ordinary IIR filter structure. Instead, we would like to devise a
structure in which we can tune specific filter characteristics by adjusting only a single parameter. In an
analog filter the adjustable element is usually a resister, while in a digital filter it is one of the numerical
coefficients in the structure.

One example of a simple digital bandpass parametric equalizer comes from an engineering report by
Regalia and Mitra (IEEE Trans. ASSP-35, no. 1, January, 1987). The structure of the Regalia-Mitra filter
is shown in Figure 3.

Figure 3: Regalia-Mitra EQ filter structure.

The embedded A(z) element is a second-order all-pass filter. Its transfer function is given by

()
() 21

21

11

1
)(−−

−−

+++
+++=

zz

zz
zA

ααβ
αβα

Note that A(z) is surrounded by several signal paths, gains, and summers. The overall transfer function of
the entire bandpass equalizer is

[] [])(1
2

)(1
2

1
)(zA

K
zAzF −++=

The structure has 3 gain elements: K, α, and β. K controls the amount of boost or cut of the bandpass EQ
filter. The α parameter controls the bandwidth of the filter, and β controls the center frequency. The
design equations can be derived to be:

()
()
()2/tan1

2tan1

cos

0

0

BW

BW

eFK j

+
−=

=

−=

α

ωβ
ω ,

where ω0 is the radian center frequency (0< ω0<π, corresponding to zero to fs/2), and BW is roughly the
-3dB bandwidth of the filter with K set to zero (notch filter). A few examples are shown in Figure 4. Note
that the controls are pretty much independent: varying the bandwidth (α) parameter doesn’t affect the gain
or center frequency, and so forth.

out in

ECEN4002/5002 DSP Lab #4 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-12

-10

-8

-6

-4

-2

0

2

4

6

Frequency (normalized to fs/2)

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0

Frequency (normalized to fs/2)

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0

Frequency (normalized to fs/2)

M
ag

ni
tu

de
 (

dB
)

Figure 4: EQ response for various values of K, α, and β.

K=0.25

K=0.5

K=1

K=1.5

K=2

α=0.5

β=0

α=0.8
K=0.5

β= -0.75

β= -0.5

β= 0

β= 0.75

K=0.5

β=0

α=0.5…0.9

ECEN4002/5002 DSP Lab #4 7

Exercise B: EQ filter
Write assembly code to implement the Regalia-Mitra EQ filter. Test the filter for several settings of K, α,
and β. Compare your 56300 results to predictions from MATLAB. Can you somehow handle values of K
that are greater than 1, perhaps by doing a scale-down and scale-up algorithm?

Extra Credit
If you have time, construct a cascade of 3 independent EQ filters. Set the filters with different center
frequencies and produce several different combinations of boost and cut with several different bandwidths.
Show your results and comment on the behavior of your EQ system.

Report and Grading Checklist

A: IIR Filters
Code listing for IIR routine that uses iirtable coefficient file, with comments on scaling.
Part 1: results (MATLAB results, non-real time output, real time frequency response)
Part 2: results (MATLAB results, non-real time and real time results)
Measurements and data verifying design and implementation.
Comments on optimization, if any.

B: EQ Filters
Code listing with comments for Regalia-Mitra filter.
Results for several values of K, α, and β.
Verification and written comments.

Grading Guidelines (for each grade, you must also satisfy the requirements of all lower grades):
F Anything less than what is necessary for a D.
D Exercise A parts 1&2 MATLAB results.
C Exercise A IIR implementation, meager results.
C+ Exercise A Parts 1&2 with verification results.
B Exercise B EQ filter implementation.
A Exercise B with validation and comments.

Note: grad student grading also requires the elliptic filter design for exercise A.

