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Abstract The goal of this research was to create an agricultural adaptive management

framework that enables the probabilistic optimization of N fertilizer to achieve maximized

net returns under multiple uncertainties. These uncertainties come in the form of biocli-

matic variables that drive crop yield, and economic variables that determine profitability.

Taking advantage of variable rate application (VRA), spatial monitoring technologies, and

historical datasets, we demonstrate a comprehensive spatiotemporal modeling approach

that can achieve optimal efficiency for the producer under such uncertainties. The utility of

VRA fertilizer research for producers is dependent upon a localized accurate understanding

of crop responses under a range of possible climatic regimes. We propose an optimization

framework that continuously updates by integrating annual on-site experiments, VRA

prescriptions, crop prices received, input prices, and climatic conditions observed each

year under a dryland spring wheat (Triticum aestivum) cropping system. The spatio-tem-

poral Bayesian framework used to assimilate these data sources also enables calculation of

the probabilities of economic returns and the risks associated with different VRA strate-

gies. The results from our simulation experiments indicated that our framework can suc-

cessfully arrive at optimum N management within 6–8 years using sequential Bayesian

analysis, given complete uncertainty in water as a driver of crop yield. Once optimized, the

spatial N management approach increased net returns by $23–25 ha-1 over that of uniform

N management. By identifying small-scale targeted treatments that can be merged with

VRA prescriptions, our framework ensures continuous reductions in parameter uncertainty.

Thus we have demonstrated a useful decision aid framework that can empower agricultural
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producers with site-specific management that fully accounts for the range of possible

conditions farmers must face.

Keywords Site-specific experimentation � Bayesian statistics � Input optimization �
Simulation experiment � Dryland agriculture � Spatial variation

Introduction

Variable rate application (VRA) research within the last 15 years has focused on finding

the optimal spatial arrangement of fertilizer for maximizing net return and yield (Thri-

kawala et al. 1999; Mamo et al. 2003; Anselin et al. 2004; Liu et al. 2006; Biermacher et al.

2009; Meyer-Aurich et al. 2010). While these efforts have advanced understanding of the

factors driving variation in crop productivity, the predominant outcome has been a fer-

tilizer prescription map that is implied to be the best management strategy for an

unspecified number of subsequent years (e.g. Anselin et al. 2004). However, given the

short temporal scale of the datasets that produce these prescriptions, there remains sub-

stantial uncertainty in the expected crop responses. Such uncertainty, often caused by

climatic variability (Mamo et al. 2003; Lambert et al. 2006; Florin et al. 2009), could be

reduced by incorporating information from additional years of data. That is, if each year’s

prescription and response were assimilated into the data model and used to generate the

following year’s treatments, then predictions would continually improve, and a degree of

adaptability would be built into the Precision Agriculture (PA) system.

Single-year prescriptions

Most VRA research to date has used some version of a randomized complete block strip

experiment where fertilizer was applied at different rates to areas of the field that had been

stratified based on some prior knowledge of crop response (Anselin et al. 2004; Liu et al.

2006; Shahandeh et al. 2010). These studies were typically based on 1 year of data,

however there are isolated examples where additional years were incorporated (Shahandeh

et al. 2005; Lambert et al. 2006). Using some form of linear or quadratic model that

incorporates site-specific (for example soil texture), and occasionally year-specific vari-

ables, a regression on yield is then performed, which feeds into a net return function (Koch

et al. 2004). This net return function is then maximized by finding the optimal value of

fertilizer (usually nitrogen—N) to apply, and a prescription map is generated for each

location in space or for management zones (Khosla et al. 2008).

A principal limitation of creating prescription maps based on 1 year of data is that it

ignores the largest source of yield-limiting variability: climate (especially in dry climate

systems). For example, if a prescription map based on an anomalous wet year were to be

implemented during drier growing seasons, there would likely be a build-up of nitrogen in

all but the most moist and responsive areas of the field. Furthermore, the ability of addi-

tional years of data to improve prescription performance is ignored, and the producer is left

with a static recommendation that may offer no improvement over uniform application.

Such condition-specific responses may at first glance suggest development of prescriptions

for multiple precipitation scenarios, but until climate can be more accurately predicted,

such approaches will not be fruitful. Maximizing the economic efficiency and minimizing
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pollution while accounting for spatiotemporal variation over multiple years would instead

enable decision-making that is more robust to the full range of possible conditions.

Multi-year prescriptions: accounting for spatial and temporal variability

The primary hurdles for incorporating spatiotemporal variability and non-experimentally

controlled fertilizer applications relate to technical difficulties and the availability of data.

Despite the increasing ubiquity of PA equipment, many producers do not have a complete,

organized, and consistent set of records that span multiple years. Without such temporally

consistent data, it is impossible to begin accounting for climatic variation, and to assess

trends over time. Yields and yield responses to N can vary drastically across years, par-

ticularly in dryland small grain systems, so incorporating multiple cropping cycles is

extremely important for decreasing prediction error (Kravchenko et al. 2005; Sadler et al.

2007; Florin et al. 2009). Adding additional years of data could be accomplished by

automating the process of annual data assimilation and model updating.

With multiple years of data that are spatially co-located, statistical dependencies arise

between observations that are close in space and in time, increasing the difficulty of

achieving unbiased estimates of model parameters. The primary approach to minimize the

influence of spatial and temporal autocorrelation is through the use of within-group or

between-group modeling structures, using either G-side (sometimes denoted as the matrix

D) or R-side covariance matrices (Laird and Ware 1982; Robinson 1991). G-side

covariance matrices are used in mixed models where each group is distributed as N(0, G),

independently of the other groups and the errors. R-side covariance matrices are used for

repeated measures or spatial analysis where autocorrelation is a structural component of

the errors, and are distributed as N(0, R). Depending on the dataset and autocorrelation of

the bioclimatic variables, either of these approaches may be appropriate to accomplish the

goal of reducing bias in the parameters or response predictions.

The most obvious means of incorporating temporally dependent inter-annual climatic

variation is to use model parameters that represent the prevailing meteorological conditions

such as precipitation, temperature or solar radiation for each year of production. All yield

observations within 1 year are likely to be temporally autocorrelated due to the unique

climatic conditions that occur in one season, leading to a field-wide annual bias in yields.

This autocorrelation can be addressed by inducing within-year correlation via mixed

models (Thöle et al. 2013). If blocked experimental plots or strips were used in the

experimental design, a crossed random-effects modeling structure (G-side) can account for

the spatial autocorrelation in yield values caused by unobserved soil, topography or eco-

logical factors, as long as the repetitions are sufficiently separated in space (within a field)

to ensure independence. However, a crossed random-effects structure does not adequately

deal with spatial autocorrelation of yields in situations where the treatments are continuous

across a field, as would be expected in a real farm scenario where an N prescription map is

being used (Fig. 1). In such a situation where each unit in the field (cell) is informing the

statistical model, the block-specific random effects do not account for the spatial auto-

correlation of nearby cells because those random effects themselves are assumed to be

independent (not true in an R-side approach) regardless of the distance by which they are

separated.

Although spatial variation often causes smaller differences in yield than temporal

variation (Florin et al. 2009), it can be much more difficult to incorporate into a crop yield

model. The complete characterization of variation in soil properties outside (even inside)

strictly controlled experimental settings is nearly impossible, and it is very difficult to even
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know the scale of edaphic variation (Cambardella and Karlen 1999; Baxter et al. 2003;

Kerry and Oliver 2003; Patzold et al. 2008). Measurements of apparent electrical con-

ductivity (ECa; mS m-1) provide a potential way to efficiently collect continuous soils

data, however the soil properties they measure (salinity, texture, and water content) are

interrelated, making it difficult to interpret ECa values (Corwin and Lesch 2003, 2005).

Nevertheless, since these soil properties directly influence plant yield (Jung et al. 2005;

King et al. 2005; Kühn et al. 2008), ECa still may be adequate for characterizing edaphic

variation if measured when soils are moist (Brevik et al. 2006). Other sources of spatial

variation, such as topography and weed/pest pressure, can also be quantified, although

biological organisms are difficult to measure in a spatially and temporally dense manner.

Another method to incorporate spatial variation, other than using random effects (G-

side) for blocking factors, requires the use of a covariance matrix (R-side) that accounts for
spatially autocorrelated errors (Lambert et al. 2006). By using an appropriate covariance

matrix, the bias in the model parameters is reduced, although it can increase the difficulty

of validating the fit and parameters chosen for the semivariogram. Inverse meta-modeling

is another method that aims to use observed spatial variation in yield to inversely derive

soil properties such as Available Water Capacity (AWC) (Florin et al. 2010), but if VRA

has already been implemented on a field it may no longer be possible to separate inherent

from management-induced variation.

A third method to deal with spatial autocorrelation of yield model residuals is Condi-

tional Auto Regression (CAR) (Besag 1974; Jiang et al. 2009 for a PA example), which

relies on the commonly derived lattice structure of aggregated PA data (Anselin et al.

2004). The advantage to working with the CAR model is that it is a computationally

efficient way of managing fine-scale spatial statistical dependencies while allowing

covariates to capture broader-scale trends (Lichstein et al. 2002). Using a simple linear

regression, the baseline model for yield (Y) for each location i, omitting the CAR

adjustment, is as follows:

Yi �N l; r2e
� �

ð1Þ

where every Yi has the same variance, and the covariance between yield at location i and

yield at another location j is modeled as zero (resulting in residual spatial autocorrelation if

Blocks

a b

Fig. 1 The typical experimental layout of VRA (Bongiovanni et al. 2007), set against a background of
edaphic spatial variation (diagonal strikes sandy, dots clayey, empty loam). In the randomized block design
of a, there is correlation within blocks but not between, which can be easily dealt with using a random effect
for each block (or fixed effects if the soil variation is of interest). In b the lack of discrete randomized blocks
and the occurrence of cells on the transition zones between edaphic conditions makes the use of a mixed
effects correlation structure inappropriate
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present). In contrast, the CAR model adds a spatial random effect / to the model for the

mean:

Yi � x
0

ib þ /i; r
2
e

� �
ð2Þ

where xi
0 represents a vector of covariates, b is the associated parameter values, and r2e

represents the independent and identically distributed (i.i.d.) errors. The set of conditional

distributions used to account for spatial autocorrelation among yield responses (/i in

Eq. 2) is specified by:

YijYj;j 6¼i �N
X

j
bijyj; s

2
� �

ð3Þ

where j represents the set of cells neighboring cell i. Yi is thus characterized by a normal

distribution function, with its mean conditional upon the average yield values yj for

neighboring cells. The bij are entries in the n x n symmetric matrix B, referred to as a

spatial weights matrix, with all bii equal to 0, all bij adjacent to cell i equal to 1 (dependent

observations), and all other bij equal to 0 (independent observations). Defined as such, this

model for yield responses subsumes information from adjacent cells to arrive at parameter

estimates for the focus cell in such a way that bias from spatial autocorrelation is reduced.

If appropriate, the weights matrix may be modified to include more distant observations

(second-order or higher). The variance–covariance matrix (not derived here) associated

with the specification shown above is:

V ¼ In � Bð Þ�1M

where In is the identity matrix, B is the aforementioned spatial weights matrix, and M is

equal to r2eIn. The complete specification for the CAR model also requires delineation of

the prior distribution (prior distributions explained under the methods section) for /i,

which is defined as follows:

/ij/j6¼i �N /i;
s2c
mi

� �
;where/i ¼

1

mi

/j

X
j2oi /j ð5Þ

where qi represents the set of neighbors surrounding cell i, and mi is the number of these

neighbors (Besag 1974; Besag et al. 1991). This implies that Yi is conditioned both by the

value of the explanatory variables but also by the adjacent yield values. As such, locations

defined as neighbors have correlated random effects and non-neighboring locations have

independent random effects.

Although alternate means of accounting for both spatial and temporal autocorrelation

exist, none have been extensively promoted within the PA literature. Spatio-temporal CAR

models (STCAR)s and dynamical spatio-temporal models (DSTM)s offer promising new

approaches (Cressie and Wikle 2011), however they can be difficult to implement, require

a larger set of temporal data than is likely to be available, and are computationally

expensive. Despite this, they should be strongly considered as computational capacity

increases and more extensive datasets become available.

Jiang et al. (2009) offered an advance in the PA research field that utilizes Bayesian

statistics to implement a CAR model. The advantage to using Bayesian methods lies in the

possibility of implementing hierarchical correlation structures and in achieving a concrete

posterior probability rather than being forced to bootstrap parameter intervals obtained

from frequentist statistics to obtain probability values. In addition, with Bayesian methods
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it is possible to separate the process from the data and parameter models, and to allow for

continuous parameter updating as more data become available (Gelman et al. 2004). The

example of Jiang et al. (2009) relied on precipitation and temperature covariates to account

for temporal autocorrelation, but residual temporal autocorrelation was not quantified.

Regardless, the spatial autocorrelation appeared to be adequately modeled, which led to the

elimination of any spatial patterns in the regression residuals.

Multi-year prescriptions: an adaptive approach

We propose an adaptive system that extends the approach of Jiang et al. (2009), to

accomplish the goal of generating continually updating probabilistic prescriptions that

improve over time. In doing so, we illustrate spatio-temporal hierarchical Bayesian

modeling with simulated results based on dryland spring wheat yield data from Montana.

The demonstrated framework and model estimates yield as a function of nitrogen, pre-

cipitation, and apparent soil electrical conductivity (ECa).

To ensure a reasonable level of accuracy in the model, we sought to realistically capture

physiological crop responses by utilizing a non-linear yield equation (Archontoulis and

Miguez 2013). This yield equation was then integrated into a net return function for

profitability analysis. From there, the model parameters and optimization could be annually

updated to achieve our objectives of progressively improved crop yield forecasts, pre-

scription maps and visualizations of the unexplored parameter space. Each of these

components is used to produce and provide new experimental treatments for the producer.

Together, the advances achieved by these objectives lay the groundwork for a more

accurate and responsive PA system that is able to incorporate the multiple forms of

uncertainty that farmers face, increasing adaptive capacity for an uncertain future.

Methods

To achieve our goal we employed Bayesian statistical theory as it relates to the ability for

models to self-update. Briefly, the standard formulation for a Bayesian posterior distri-

bution is as follows:

p hjDð Þ ¼ f Djhð Þp hð Þ
p Dð Þ ð6Þ

where h is the parameter(s) of interest, D is the observed data, and f is the likelihood

function. Therefore, the probability of the parameter given the observed data is equal to the

product of the likelihood and the prior belief in the distribution of h, divided by the

marginal probability of the data (equivalently represented as r f Djhð Þp hð Þdh in a contin-

uous context). This suggests that the posterior probability of the parameter is a weighted

combination of the observed data and the prior certainty about the value of the parameter.

Knowledge about the prior distribution is solely based on knowledge from previous

research or intuition, but in practice is usually uninformative when no prior data are

available (as is the case in this study for the first year of observations). This leaves the

posterior entirely determined by the observed data. However, if the prior itself is based

upon a probability distribution that requires additional parameters for specification (hyper-

parameters k), such as a Beta distribution that requires a and b parameters, then the

posterior distribution is expanded as:
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p hjDð Þ ¼ p D; hð Þ
p Dð Þ ¼ f Djhð Þp hjkð Þp kð Þ

p Dð Þ
f Djhð Þp hjkð Þp kð ÞRR

f Djhð Þp hjkð Þp kð Þdhdk ð7Þ

It is important to notice that the denominator in Eq. 7 is the marginal probability of the

data when all of the parameters have been integrated over, and must equal one. In practice,

this term is called the normalizing constant, and can be ignored if using computational

(rather than analytical) methods to sample the posterior distribution.

Once 1 year of crop yield data has been collected, the resulting posterior can form the

basis for a new prior distribution. In mathematical notation:

p hjD0;Dð Þ ¼ f D0jhð Þp hjDð Þ
p D0ð Þ ð8Þ

where D0 is the current year’s yield data, D is last year’s yield data, and p(D0) is equivalent
to rpðD0jhÞp hjDð Þdh. The above equation simply demonstrates that during each time step,

the old dataset can serve as the basis for the new prior, providing a platform for a con-

tinuously updating model that should become more precise after each time step, assuming

that the process (yield) model is properly constructed.

To evaluate the posterior distribution, at any time step, it is possible to analytically

derive the mathematical form of the posterior if the likelihood and prior functions are

relatively simple and conjugate to each other. If this is not possible, then either Metropolis–

Hastings or Gibbs (a more specific form of Metropolis–Hastings) sampling may be per-

formed, whereby possible parameter values are proposed and either accepted or rejected in

an iterative procedure. Over time, it can be mathematically shown that the parameter

samples converge to the true joint posterior distribution (Gelman et al. 2004).

The non-linear bayesian car model

In the standard notation of linear regression, the yield model for cell i in year j (following

the general logistic form in Archontoulis and Miguez 2013) used to address our objectives

was as follows:

Yieldij ¼
bmax � precipj

1þ exp bshp � b1 � QuantNij � b2 � ECa;i � b3 � ECa;i � QuantNij

� �þ /i þ e

ð9Þ

where e�N 0; r2e
� �

, and /i is the estimated spatial random effect associated with cell i,

which is used to account for spatial autocorrelation (see Eq. 2). In this specification, the

parameter bmax can be interpreted as the maximum amount of yield at the asymptote and

bshp can be interpreted as the shape parameter because it shifts the yield-N response curve

to the left or right. ECa represents the apparent electrical conductivity (mS m-1) of the soil

and serves as a proxy for soil properties that impact yield such as available water holding

capacity. QuantNij is the amount of nitrogen applied to cell i in year j in the form of urea

(kg ha-1). Details on the spatial random effect, the variance–covariance matrix, and the

spatial weighting scheme are identical to the CAR model described in the introduction.

Although some potentially relevant factors such as temperature and soil N are omitted,

this model sufficiently allows for the examination of the Bayesian framework as influenced

by edaphic (ECa,i; changes over space but not across years) and management (QuantNij)

variables, plus an annually changing (precipitation) variable. The nonlinear term represents

an asymptotic (logistic) response of yield to N application, which more closely resembles
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the actual biological response function than a linear model (Archontoulis and Miguez

2013) except at very high toxic N rates, which a farmer is unlikely to ever apply. If this

model was being used for the purpose of hypothesis testing, then it would be appropriate to

transform the N variable to comply with the assumptions of linear regression. However,

since the aim is simulation, for which unrealistic values such as negative numbers or

infinitely increasing yields would skew optimizations, the more physiologically accurate

non-linear approach is more appropriate.

From a Bayesian CAR perspective, the model was formulated as follows:

p bmax; bshp; b1�3; r
2
e ; s

2
c jyield

� �
¼

f Yieldjbmax; bshap; b1�5; r; sc
� �

p bmax; bshap; b1�3; r
2
e ; s

2
c

� �

RRR RRR
dbmaxdbshpdb1�3dredsc� f Yieldjbmax; bshp; b1�3; r2e ; s

2
c

� �
� p bmax; bshp; b1�3; r2e ; s

2
c

� �

ð10Þ

where the likelihood is modeled by a normal distribution, with Yij �N l; r2e
� �

, and l equal

to nonlinear function (9) ? /i, with a common spatial variance of sc
2 for the random

effects. In our model (Fig. 2), we also specified a set of hyper-parameters on the b1, b2, b3,
bmax, bshp, re

2 and sc
2 parameters, which reflected our uncertainty in their prior distributions

(Gelman et al. 2004; Jiang et al. 2009).

Integration into the net return-maximizing function

To enable economic analysis, the posterior distributions for the parameters of interest

(bmax, bshp, b1–3) and for the nuisance parameter (/i) from the crop yield model were

integrated into a net return function. In all years of the simulation, the precipitation amount

changed and the crop price to be received at harvest was unknown. Therefore, uncertainty

in both of these values was incorporated into the net return function following the approach

of Anselin et al. (2004).

NetReturnij ¼ Pricecrop;j

�E
bmax � precipj

1þ exp bshp�b1 �QuantNij�b2 �ECa;i�b3 �ECa;i �QuantNij

� �þ/i

" #

�PriceNj �QuantNij�FC

ð11Þ

where E[] is the expected value of the yield function and /i the spatial random effect in cell

i (conditional on the neighboring cell random effects), PriceNj is the price of N (dollars/kg)

in the current year, QuantNij is the quantity of N applied (kg/ha), and FC is other average

fixed costs associated with crop management ($605.44/ha) (USDA 2012a). The difference

between the previous formulation (Anselin et al. 2004) and our construction is that instead

of using a fixed value for the crop price and expected values for the parameters, we used

distributions:

Net returnij ¼ p pricecrop;jjHistpricecrop
� �

� p Yieldijjparam
� �

� p paramð Þ
� p priceNjjHist Pr iceN

� �
� QuantNij � FC: ð12Þ

Where net return is in $/ha, p(Pricecrop,j|HistPricecrop) is the posterior probability dis-

tribution of crop prices from an autoregressive time series model for a historical dataset of

prices ($/kg), p(Yldij|param)*p(param) is the posterior probability of yield values given the
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uncertainty in the parameter values, the amount of applied N, and the cell-specific random

intercepts, p(priceNj|HistPriceN) is the probability of current N prices given the historical

distribution of nitrogen prices, QuantNij is the quantity of N applied to cell i in year j, and

FC represents the fixed costs.

Since the output of this function is a distribution on net return from which QuantNij

cannot be optimized, we instead performed Monte-Carlo simulations on the input distri-

butions to obtain unique net return realizations. This was accomplished by drawing one set

of possible parameters from the posterior parameter distributions, adjusting up or down to

reflect the spatial effect of cell i and the unexplained variance, then optimizing N to obtain

the maximum net return for cell i. This was performed 1,000 times in order to derive a

distribution of the optimal values of N rate to apply to each cell. For a producer, the final

parameter of interest would be the mean of the optimal N values for each cell, which

integrated all of the uncertainty in the parameters including precipitation and the com-

modity price received (Fig. 3).

Annual updating

The net return-maximizing optimization process culminated in a site (cell)-specific N rate

prescription map. The following year, the updating process began, inserting the posterior l
and r values for each parameter as the new priors, and using new observations for the data.

For each subsequent year, it was expected that the variance of each parameter would

sequentially converge to the true variance, increasing certainty in the optimization

prescriptions.

Fully exploring the parameter spaces

If a producer were to use the raw prescription map each year without modification, it is

highly possible that some areas would receive exclusively large, or small, amounts of N.

While this may be optimal based on the derived spatial crop responses to N, it could

prevent the exploration of parameter combinations that might increase the net returns. For

example, if only wet years (in an arid location where extra moisture is nearly always

beneficial) had been observed, it might be assumed that under clayey soils the crop would

Fig. 2 Diagrammatic flow of the Bayesian CAR model with all distributions for the parameters and hyper-
parameters specified
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respond favorably to high levels of N. However, that relationship might not hold true under

dry years. This illustrates the importance of exploring the parameter space completely, at

least during the initial years of PA implementation, in order to determine the crop

responses under a full range of possible conditions. This exploration must be continued

until enough years have been sampled to have high certainty in the distribution of con-

ditions. Our framework accomplished this exploration through the use of annual N rate

experiments on top of the optimized N prescriptions, and through visualizations of the

N-EC-precipitation parameter space.

Simulation model implementation

The model as described above was implemented (Table 1) on a simulated 30-row by

30-column grid, with each grid cell representing a theoretical hectare. In practice, most

fields are divided into smaller cell sizes that fit the size of the VRA fertilizing equipment

(albeit with a similar number of total cells), however the use of one hectare cells provided

easy interpretability for this example and was ideal for visualizing results. Mean values and

variances for the input variables were chosen to be similar to those observed within

multiple *50 ha fields (111.498W, 47.688N) growing non-irrigated spring wheat, located

near Great Falls, Montana. We chose to use simulated rather than real data for the ECa and

/i variables in order to have complete knowledge of the structure of spatial variation. The

spatially correlated ECa Gaussian random field grid (Fig. 4) was generated within the R

package RandomFields (R Core Team 2012; Schlather 2012) and was characterized by an

exponential isotropic spatial covariance structure (r2 = 640, l = 50, range = 50, nug-

get = 0, scale = 1). Realized precipitation values for each year of the simulation were

based on historical precipitation data (site: Sun River 4s) (National Climatic Data Center

2013), with the distribution centered at 26 cm and a standard deviation of 6.4 cm. Crop

price received was based on a posterior distribution from a simple time series autore-

gressive lag 1 (AR1) model for first-differenced price data (1998–2012) obtained from the

Fig. 3 The process by which crop yield parameter posterior distributions are sampled, N rate applied was
optimized, and a distribution of optimized N was derived for each cell
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Montana Wheat and Barley Committee (MWBC) (Montana Wheat and Barley Committee

2013) for current data; historical data obtained directly from the MWBC. The price

uncertainty experienced by a farmer was approximated by obtaining the forecasted dis-

tribution 1 year (365 days) into the future. Fertilizer cost data are generally proprietary,

therefore a normal distribution was used to approximate its uncertainty N(l,r) = N($0.55/

kg, $0.055kg), and was based on annual fertilizer cost data available from the USDA

(USDA 2012a). Finally, fixed costs for the producer were obtained from the USDA (USDA

2012b), and were $605.44/ha omitting fertilizer costs, which were included in the model.

Initial conditions for the simulated updating process assumed that a farmer beginning to

use PA technology would start with at least 1 year of yield monitor data under a uniform

fertilizer application (140 kg/ha) before attempting to implement VRA. Following the first

year of observing spatially variable yields, the field was stratified into three different yield

classes with equal frequency (high, medium, low), within which different N rate treatments

were applied. N rate treatments were selected to minimize influence on profitability (i.e.

occupied small areas). These treatments as designed were three cells long within the

direction of travel, which helped to ensure that the fertilizer spreader had adequate time to

turn on, definitively spread the fertilizer, and turn off within the designated treatment area.

The average farmer is unlikely to implement such a spatial experimental design themselves

without substantial assistance, thus the implementation was automated as much as possible.

To calculate yields in the initial year and in subsequent iterations, Eq. (9) was applied

using the parameter coefficients (Table 2). The bshp parameter was fixed in order to

eliminate its tendency to co-vary with the other exponential parameters (all parameters

shifting up or down together, resulting in non-differentiable curves). It was based on

generalized yield responses to N in Montana, where substantial yield gains from N addi-

tions typically occur between 0 and 80 kg/ha (Jackson 1998). Further variation was added

to the yield for realism by drawing random values from a normal distribution (centered at

zero and with a standard deviation of 270 kg/ha) then adding those values to each cell in

each year. The value of the additional variance was based on observed residual variation

from the aforementioned study site near Great Falls. The mean parameter values were

taken as the ‘‘true’’ parameter values, which would later be estimated using the Bayesian

MCMC process (Gelman et al. 2004).

The value for /i, the spatial random effect, was calculated from a multivariate normal

distribution with a mean of zero and covariance matrix with r’s of 75 kg/ha (5,625 kg/ha

r2) for neighboring cells, and 0 kg/ha for non-neighboring cells. These values were based

on observed spatial autocorrelation from the previously mentioned field experiment

(Fig. 4). Markov Chain Monte-Carlo (MCMC) simulations for the posterior distributions

of the parameters were performed using the python programming language and the free

python package pymc (Fonnesbeck et al. 2012). Previous implementations of CAR models

have primarily been implemented with the software WinBUGS (‘‘Windows version of

Bayesian Updating using Gibbs Sampler’’, http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/

contents.shtml), however WinBUGS has not been updated since 2007, and we deemed it

valuable to build our framework in an open source software package that was continuing to

be developed and improved.

Prior distributions (as explained in the introduction) used for the coefficient parameters

followed either normal or truncated normal distributions (Table 3) (Jiang et al. 2009). The

truncated normal distributions were used in order to prevent the non-linear parameters

from moving into unrealistic values in our system. The variances were set to be extremely

large (1e-12) in the first year in order to make the priors non-informative for both the

normal and truncated normal distributions. If expert knowledge was available that could
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direct the priors to be informative, then such knowledge could be incorporated initially,

and would improve the convergence of the posterior distributions.

The prior distributions in the first year for the total model variance, re
2 and the spatial

variance (sc
2) were set to follow inverse-gamma distributions ð� IG a; bð ÞÞ (Jiang et al.

2009), which were again specified to be non-informative (Gelman et al. 2004). In sub-

sequent years, the priors were determined by the previous years’ posterior distributions.

During each year, the model was run for 100 000 iterations, using a burn-in period of

40 000 (wherein initial samples are discarded due to high autocorrelation) samples and a

thinning rate of 20 in order to improve convergence and reduce autocorrelation between

the samples. Convergence was confirmed through visual assessment of the parameter trace

plots and autocorrelation plots.

Results and discussion

Convergence

Bayesian model validity depends on how well the specified model represents reality and

the degree to which the posterior parameter distributions have converged. For this simu-

lation model, distributions of the primary parameters of interest converged after 6 years of

the simulation (excluding year zero), and the primary variance parameter re required

8 years to converge (Fig. 5). The spatial variance parameter rs had not converged after

8 years, however it was trending towards its true value. Its lack of convergence was

reasonable given all the other sources of confounding spatial variability, though it is
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Fig. 4 ECa surface with an exponential spatial autocorrelation structure (a), and surface of yield values (k/
ha; /i) used to induce spatial autocorrelation in the response values (b)

Table 2 ‘‘True’’ parameters used to calculate yield within Eq. (9)

Parameter bmax bshp b1 b2 b3 re = 1=
ffiffiffiffiffi
s2

p
rs =

ffiffiffiffiffi
s2c

p
=

ffiffiffi
8

p

Value 137.8 4.8 0.02 .03 .0015 270 75

re and rs are shown rather than s2 and sc
2 to enable the parameters to be interpreted on meaningful scales.

Equivalent values for s2 and sc
2 -are .0000137 and 45 000 (parameterized as an inverse in python package

pymc (Fonnesbeck et al. 2012) as .000022 (1/45 000))
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possible that with an expanded CAR neighborhood size the parameter could be more

accurately and quickly estimated. Additional simulations (not shown) using unique ran-

domly drawn values of precipitation converged after 6–10 years, indicating that conver-

gence can be achieved under different precipitation scenarios. In either case, multiple years

of precipitation observations were required, reinforcing the need to collect and utilize

multi-year data, and create N rate experiments over time.

Spatiotemporal variation

Residuals following year 6 of the simulations show minimal spatial pattern (Fig. 6), indi-

cating that spatial autocorrelation was sufficiently accounted for (Moran’s I = 0.01, p value

for significant spatial autocorrelation = 0.48). Since temporal variation in yields was sim-

ulated using only one variable (precipitation), and that variable was included in the CAR

model, temporal autocorrelation for each cell and for the field as a whole became insig-

nificant once the model converged. This could be deduced from the lack of field-wide

residual trends between years (after convergence), even under different precipitation con-

ditions (Figs. 6, 7). If a longer set of years was observed, quantitative metrics rather than

visual assessment could be used to assess the temporal autocorrelation. In a real world

scenario with many possible drivers of temporal variation rather than only precipitation, it

would be essential to assess residual temporal autocorrelation, which would give insight into

the ability of temporal covariates to explain inter-annual variation. If the temporal covariates

did not perform adequately, more climatic variables should be considered in the analysis.

The parameter space plots (Fig. 8) suggest that in addition to multiple years of pre-

cipitation observations, the experimental treatments applied in each year were crucial for

achieving convergence. Within each year, the optimizations are visible as obvious clusters

of points, whereas the fertilization treatments can be discerned by their correspondence to

levels of 0, 60, 120 and 180 kg/ha of N. In the first 5 years of the simulation before

convergence was achieved (years 5 and 6 omitted for clarity), the optimization chose N

values that were near 0 kg/ha, whereas after convergence the optimization selected values

clustered between 70 and 130 kg/ha. If only optimized N values were applied in each year

(i.e. not applying rate experiments to explore the parameter space), convergence would be

far less efficient or even impossible, especially for non-linear functions. The strategy of

applying small experimental strip treatments, comprised of a range of N values in different

yielding areas, helped speed convergence while eliminating the need for a farmer to devote

their entire field to potentially non-profitable experimentation.

Small differences between the true parameters and the estimated parameters had neg-

ligible effects on the relationship between yield and N after year 6 (Fig. 9). With the

exception of the spatial intercept, these parameters were identical for all areas in the field

in each year. We chose to fix the value of the shape parameter due to its interdependence

with b1, b2, and b3, however given a sufficiently comprehensive dataset, it may be possible

for the shape parameter to be estimated within the model. Furthermore, depending upon the

purpose of the model, it may not matter whether the exponential parameters are interde-

pendent if the realized Yield-N relationship remains unaffected. This behavior was

observed during previous model runs when bshp was not fixed.

Optimization

Maximizing net return and reducing the amount of unnecessary fertilizer applied requires

knowledge of the underlying N-yield relationship and the response of net return to the full
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range of bioclimatic and economic variability. Therefore, as a wider range of conditions are

observed, the underlying crop parameters are better understood and the optimization is more

efficient at maximizing net returns. Predictably, the optimizations for years 1–5 resulted in
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Fig. 7 Yield residuals for years
1–6 for each individual cell in the
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low net return realizations due to the lack of parameter convergence (Fig. 10, fourth row and

bottompanel). In a real-world scenario itmay be advisable for a producer tomaintain uniform

fertilization except in experimental strips, until a sufficient range of precipitation conditions

have been observed (Fig. 10, second panel from the bottom) and some nominal level of

convergence is achieved. However, after year 5, the optimizations successfully maximized

net returns within the constraint of unknown random precipitation, generating a $23–25 ha-1

advantage over uniform fertilization (Fig. 10, bottompanel). Over time (up to convergence at

*6–10 years) the VRA prescriptions and treatments continually improved, refining

knowledge of the driving parameters and increasing profitable returns.

Once the parameters converged (*6 years), the optimization map was largely spatially

and temporally static. Different levels of yield were observed, but those levels were driven

by the temporal variation of precipitation in our dryland system. If additional information

was available on the amount of expected precipitation just prior to fertilization, then the

optimization could incorporate that updated information and choose different levels of N.

Advance predictions of available water from statistical or process-based models would

further increase the accuracy of the optimization and would reduce the risk of over-

fertilization especially for such dryland agricultural systems.

Additional variables for future inclusion

The model used for this simulation employs only a few variables for simplicity, however

additional driving variables could foreseeably be incorporated into the non-linear function.

Whenever explanatory variables are available that help describe the variation in crop yield and

reduce spatiotemporal autocorrelation, their use would increase accuracy and further under-

standingof the systemdriving factors. For example, if soilwater availabilitywas knownprior to

N fertilizer application, itwould likely bemore predictive than precipitation in dryland systems

with aridmoisture regimes. Equally important, if somemeasure of soil Nwas available prior to

fertilization, then the effects of applied versus intrinsic N could be disentangled, resulting in

increasedmodel accuracy. In addition, ecological factors such asweed density and an indicator

variable for the previous crop could be included, whichwould help identify the degree towhich

the yield-nitrogen relationship depends on plant competition or previous crop nutrient use.
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The drawback to including more variables is a possible increase in the number of years

of data that would be needed to achieve convergence. Furthermore, with additional vari-

ables, more creative parameter space visualizations would be required such as using colors

for a fourth dimension. However, the advantage of including key driving variables may

offset any drawbacks of additional data requirements, especially if the variables explained

large variations in yield.

Conclusion

Our goal was to create an agricultural adaptive management framework that employs

VRA and spatial monitoring technologies and explicitly includes the uncertainties of

principal factors driving crop yield and quality. While the resulting framework for

understanding agricultural management-response relationships has yet to be tested on

field-collected data, our results indicate that it has strong potential as a decision aid (with

the statistical details hidden) for farmers to progressively manage their nutrient inputs

toward an optimization based on maximized net returns. In such a scenario, farmers

would generate the data to parameterize the models (experimental designs automatically

implemented with VRA), but would then have the ability to modify simulated variables

such as precipitation to predict impacts on profitability. Most importantly, this meth-

odology does not require farmers to sacrifice their entire fields to experimentation, as

they could simply apply experimental strips until sufficient time had passed to render the

data necessary for model convergence.

Another key aspect is that the model incorporates climatic variation, without which

prescriptions would be inaccurate, especially in dry-land farming systems. By utilizing a

more biologically-appropriate non-linear function instead of the typical linear or linear-

quadratic response function (Anselin et al. 2004), the model also moves one step closer

towards generating field-based ecological understanding by placing increased emphasis on

the local variance rather than the mean crop response to inputs. Furthermore, it simulta-

neously accounts for spatiotemporal dependence, which will always be a source of bias for

regular regression models when farmers are unable to implement the carefully designed

experiments commonly used in scientific settings.

In addition to providing an improved model, the entire framework benefits from the

inclusion of historical precipitation, input cost and price uncertainties. When farmers make

management decisions, they must incorporate all of these uncertainties into their choices if

they impact profitability. Therefore, it is only appropriate to quantitatively include

uncertainty in the optimizations to provide probabilistic projections of net returns.

In summary, this approach advances precision agriculture towards a probability-based,

self-updating system that is consistent with the needs of farmers. It provides adaptability

and encourages continual experimentation, leading to an end result of increased profit-

ability, resilience and site-specific understanding of the agricultural system.
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