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Abstract
The software supply chain (SSC) continues to face cybersecurity
threats. To assist in securing SSCs, Software Bill ofMaterials (SBOM)
has emerged as a pivotal technology. Despite the increasing use
of SBOMs, the influence of SBOM generation on vulnerability de-
tection was unaddressed. We created four corpora of SBOMs from
2,313 Docker images by varying SBOM generation tool (Syft, Trivy)
and SBOM format (CycloneDX, SPDX). Using three common SBOM
analysis tools (Trivy, Grype, CVE-bin-tool), we investigated how
the reported vulnerabilities for the same software artifact varied
when we changed only the SBOM generation tool and format. With
the complex nature of SBOM generation and analysis, we expected
some variation in reported vulnerabilities. However, we found high
variability in vulnerability reporting attributed to SBOM generation.
The variation in the quantity of vulnerabilities discovered in the
same software artifact highlights the need for rigorous validation
and enhancement of SBOM technologies to best secure SSCs.
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1 Introduction
The software supply chain (SSC) is a vital part of modern software
applications and is facing a large increase in cybersecurity attacks
[1]. Software supply chains are composed of a growing number of
components including binaries, libraries, tools, and microservices
necessary to meet the requirements of modern software. A large
part of SSCs is made up of third-party dependencies, incorporated
to address software needs [2].

The substantial and expanding number of dependencies present
in SSCs reveals a significant security concern [3]. Software supply
chain attacks increased by 650% in 2021, marking a substantial
escalation from the already significant 430% increase in 2020 [1].
Additionally, SSC attacks are often extremely damaging as seen
with the Apache Log4j [4] and Solar Winds [5] attacks. As a result,
different technologies have emerged to assist secure SSCs. Our
research focuses on one emerging technology, the Software Bill Of
Materials (SBOM).

SBOM technology is rapidly advancing and becoming a pivotal
element in ensuring the security of the SSC. In 2021 the U.S. gov-
ernment issued Executive Order 14028: Improving the Nation’s
Cybersecurity1, which explicitly acknowledges the SBOM as a cru-
cial component. SBOMs are comprehensive inventories of all soft-
ware dependencies employed in a specific application or system.
This inventory enables security practitioners to detect and mitigate
security vulnerabilities in SSCs.

Vulnerability detection within software components contained
in SBOMs is primarily accomplished through SBOM analysis tools.
Open-source and proprietary SBOM analysis tools have been devel-
oped [6–9] that detect vulnerabilities in SSCs through vulnerability
matching against vulnerability databases as well as Common Plat-
form Enumeration (CPE)2. Utilizing SBOMs to detect and commu-
nicate vulnerabilities present in SSCs plays a vital role in securing
1https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/
2https://nvd.nist.gov/products/cpe
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SSCs of all software types. An important use case of SBOMs is
within the microservice domain.

The use and importance of microservices continues to rise [10].
The dynamic and decentralized nature of microservices poses sig-
nificant challenges for security and vulnerability management [11].
Leveraging SBOMs for microservices enables visibility into their
SSCs. This visibility leads to effective identification and mitigation
of security vulnerabilities. In the context of microservice architec-
ture, Docker3 images have become a popular choice for packaging
and deploying individual microservices. They are a popular choice
due to their lightweight nature and scalability benefits [12]. There-
fore in this study, we focus on SBOM generation for Docker images.

To leverage SBOMs for enhanced SSC security, first an SBOM
is built. SBOM generation in the domain of microservices, specifi-
cally Docker images, involves understanding and documenting the
dependencies present in each image. This process requires tracing
software components and libraries bundled within images as well as
identifying their relationships. This process is inherently complex
and prone to error [13].

Challenges associated with SBOM generation have given rise to
numerous SBOM generation tools and formats [13]. We focus on
two popular open-source SBOM generation tools that build SBOMs
for Docker images, Syft v0.102.0 built by Anchore4 and Trivy v0.49.0
built by Aqua Security5. For each tool, we chose the latest release.

SBOM formats are a set of standards that describe how to store
and save SBOM information. These formats aid in the automation of
accurate vulnerability detection. Formats recognized by Executive
Order 14028 include Software Package Data Exchange (SPDX)6,
CycloneDX7, and Software Identification (SWID) tags8. Moreover,
SPDX and CycloneDX are widely adopted industry standards [16].
SPDX version 2.3 and CycloneDX version 1.5 are the most recent
versions of the formats, and we investigate these versions of these
formats in this study.

Within SBOM generation, Syft and Trivy operate at the inter-
section of SBOM and SSC security research and offer a promising
solution to the challenging problem of building SBOMs. These
tools claim “reliable”9 and “exceptional”10 vulnerability scanning
for SBOMs generated by them. However, our previous research
suggests that these tools are not entirely reliable. For instance, vul-
nerability reported vulnerabilities can vary drastically in SBOMs
generated by Trivy [18]. Therefore, we sought to understand the
impact of these generation tools and formats on the vulnerability
reported vulnerabilities of popular SBOM analysis tools. Thus, our
research addresses the following questions:

RQ1: What impact do SBOM generation tools have on vul-
nerability detection in Docker images?

RQ2:What impact do SBOM formats have on vulnerability
detection in Docker images?

We selected the following SBOM analysis tools due to their
popularity as well as input from industry partners and subject

3https://www.docker.com/
4https://anchore.com/
5https://www.aquasec.com/
6https://spdx.github.io/spdx-spec/v2.3/
7https://cyclonedx.org/docs/
8http://dx.doi.org/10.6028/NIST.IR.8060
9https://trivy.dev/
10https://github.com/anchore/syft/blob/main/README.md

matter experts: Trivy v0.49.0 built by Aqua Security, Grype v0.74.3
built by Anchore, and CVE-bin-tool v3.2.1 built by Intel11. For each
tool, we chose the latest release. Note that Trivy both generates
and analyzes SBOMs, therefore we refer to Trivy as Trivy𝐺 when
used for generation and as Trivy𝐴 when used for analysis.

2 Related Work
Software Bill of Materials (SBOMs) have become increasingly vital
in securing software supply chains, yet research focused specifically
on SBOM generation is still relatively scarce. Even fewer studies
have compared the performance of SBOM generation tools.

Balliu et al [13] examined the effectiveness of SBOM generation
tools within Java Maven projects, uncovering significant challenges
in producing complete and accurate SBOMs due to the complexity
of Java dependencies and the limitations of the tools themselves.
Inspired by this work, Rabbi et al. [14] studied on the npm ecosys-
tem, highlighting the difficulties SBOM tools face in identifying
all dependencies, particularly those introduced through transitive
relationships.

While these studies shed light on SBOM generation tools, they
primarily concentrate on the completeness and accuracy of the
SBOMs produced. These studies stop short of exploring how SBOM
generation tools and SBOM formats affect the practical use of
SBOMs in real-world security scenarios, particularly in vulner-
ability detection. The existing research leaves a significant gap in
understanding the implications of SBOM generation choices on
downstream security processes.

Our work aims to fill this gap by shifting the focus from the
generation accuracy of SBOMs to how different SBOM generation
tools and SBOM formats impact vulnerability detection by SBOM
analysis tools. By doing so, we provide a more holistic understand-
ing of SBOMs’ role in enhancing software supply chain security,
addressing not just the technical accuracy of SBOMs but also their
practical utility in mitigating security risks.

3 Methods
To address our research questions, we collected a corpus of 2,313
Docker images, from which we created four corpora of SBOMs.
We generated the SBOMs using the selected generation tools (Syft
and Trivy𝐺 ) in the selected formats (CycloneDX 1.5 and SPDX 2.3).
Next, each corpora of SBOMs was run through the selected analysis
tools (Fig. 1).

To build our corpus of Docker images, we first obtained the tag
history for the 100 most pulled images available on docker hub12.
We omitted two of these images, Tomcat and Drupal, due to not
being able to collect their entire tag history.We then selected 25 tags
for each docker image spaced evenly throughout the tag history. If
an image had less than 25 tags we selected all available tags.

We chose the top 100 pulled images from docker hub because
they represent widely used and actively maintained images, ensur-
ing that our analysis focuses on Docker images that are relevant in
real-world scenarios. Additionally, this approach facilitated ease of
data gathering, as focusing on a smaller set of images allowed for

11https://www.intel.com/content/www/us/en/developer/topic-technology/open/
overview.html
12https://hub.docker.com/
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Figure 1: Overview of the methodology to study SBOM gener-
ation impacts on vulnerability reporting for Docker images.

more efficient data collection while still ensuring a large dataset
with variation. We omitted any images in which either of the se-
lected SBOM generation tools failed, resulting in four corpora of
2,313. Additionally, we omitted any images for which any of the
SBOM analysis tools failed. This resulted in a final four corpora of
1,303 SBOMs that we assessed.

It is important to note that the final number of SBOMs assessed
is much lower than the initial number of generated SBOMs. This
reduction is due to failures by the analysis tools to process certain
SBOMs. While CVE-bin-tool failed to run on a higher number of
the generated SBOMs, Grype and Trivy𝐴 also experienced failures,
though these were less frequent. The failures were caused by a
variety of reasons, such as malformed package names, ecosystem
incompatibility, and others. Importantly, the tools typically did not
all fail on the same SBOMs, which led to a higher dropout rate. We
had to exclude any SBOM where even a single tool failed, reducing
the dataset further. Despite the impact on our sample size, we chose
to retain all three tools, including CVE-bin-tool, in our analysis to
maintain the diversity of analysis tools. Excluding CVE-bin-tool
would have left only tools developed by the vendors of the SBOM
generation tools, which could introduce bias and limit the scope of
our findings.

To attribute the variation in tool output to either generation tool
or format we held the following factors constant. One, we assessed
the impacts of SBOM generation using the same version of each
SBOM analysis tool; thus, differences in vulnerability reporting
would not result from differences in vulnerability reporting across
tool versions [15]. Two, when investigating the impact of the gen-
eration tool on vulnerability scanning, we held the format constant.
That is, we compared the analysis tool reported vulnerabilities for
SBOMs generated with Syft CycloneDX 1.5 with reported vulnera-
bilities for SBOMs generated with Trivy𝐺 CycloneDX 1.5 and we
compared reported vulnerabilities for SBOMs generated with Syft
SPDX 2.3 with reported vulnerabilities for SBOMs generated with
Trivy𝐺 SPDX 2.3. Three, when investigating the impact of format
on vulnerability reporting, we held the generation tool constant.

That is, we compared the analysis tool reported vulnerabilities
for SBOMs generated with Syft CycloneDX 1.5 with the results for
SBOMs generatedwith Syft SPDX 2.3 andwe compared the reported
vulnerabilities for SBOMs generated with Trivy𝐺 CycloneDX 1.5
with the reported vulnerabilities for SBOMs generated with Trivy𝐺
SPDX 2.3.

We followed the analytical methodology of Reinhold et al. [15] to
guide data analysis. We employed Python 3.10.12 with the “Numpy"
[20], “Matplotlib" [21], and “Seaborn" [22] packages, along with the
R statistical computing environment [19]. For plotting, we utilized
“ggplot2" [23] with colors selected from the “viridis" package [24].
To capture variability in reported vulnerabilities, we took a two-
pronged approach. First, the overall reported vulnerabilities for
each SBOM analysis tool in each SBOM dataset were depicted
using violin plots (Fig. 2 & Fig. 5). It is important to note that in
Fig. 2B and Fig. 5A, a significant outlier is observed, where Trivy𝐴
reported zero vulnerabilities for a majority of the SBOMs that were
generated with Syft in SPDX 2.3 format, resulting in visually smaller
violin plot areas compared to the other data. This outlier reflects
a unique characteristic of the dataset rather than a discrepancy
in data analysis or visualization technique. Second, Jenks natural
breaks optimization13 was used to categorize the total reported
vulnerabilities, which were then plotted for each tool and corpus
in Sankey plots (Fig. 3 & Fig. 6).

To assess the statistical significance of differences in SBOM anal-
ysis tool vulnerability detection when using different SBOM gen-
eration tools and formats, we began with parametric tests, which
assume normality in the data distribution. However, our data did not
conform to this assumption, thus parametric tests were not appli-
cable. We then turned to non-parametric methods, specifically the
Wilcoxon signed-rank test, which is suitable for data that is paired
and not normally distributed. Unfortunately, this test also proved
unsuitable because the differences in reported vulnerabilities were
not symmetrically distributed around the median, violating the
test’s assumptions.

Due to the challenges parametric and non-pamametric testing
presented, we employed bootstrapping, a robust technique that does
not depend on assumptions about the data’s distribution. Bootstrap-
ping involves generating numerous resampled datasets through
iterative resampling with replacement, allowing us to estimate the
distribution of the statistic of interest. For our analysis, we utilized
20,000 bootstrap samples, each with a size of 𝑁 − 1 where 𝑁 is the
total number of observations. This approach enabled us to compute
point estimates and confidence intervals for the differences in re-
ported vulnerabilities between various SBOM generation tools and
formats. This is illustrated in Fig. 4 and Fig. 7.

Additionally, we evaluated the practical significance of our find-
ings by calculating Cohen’s D values. Cohen’s D quantifies the
effect size, providing insight into the magnitude of the differences
observed. The values indicate the extent of variability in vulnera-
bility detection attributed to the different SBOM generation tools
and formats, displayed in Table 1. Through this comprehensive
approach, we were able to thoroughly explore and quantify the
impact of SBOM generation variations on vulnerability detection.

13“BAMMtools" package’s “getJenksBreaks" function [25]
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This investigation can be replicated using the data science pipeline
located on our GitHub page at https://github.com/MSUSEL/msusecl-
sbom-generation-and-analysis-pipeline.

4 Results
The influence of SBOM generation tool and format on vulnerabil-
ity detection is evident. However, SBOM generation tools impact
vulnerability detection more than SBOM formats.

In this section, we explore the effects of SBOM generation tools
Syft and Trivy𝐺 , on vulnerability detection using SBOM analysis
tool Trivy𝐴 , Grype, and CVE-bin-tool. Then, we investigate the
effects of SBOM formats CycloneDX 1.5 and SPDX 2.3, on vulner-
ability detection using SBOM analysis tools, Trivy𝐴 , Grype, and
CVE-bin-tool.

4.1 RQ1: What impact do SBOM generation
tools have on vulnerability detection in
Docker images?

The number of vulnerabilities reported from SBOM analysis tools
are highly dependent on the vendor that produces the generation
and analysis tools. More specifically, when the same vendor’s tool
is used for SBOM generation and analysis, the number of reported
vulnerabilities over the corpus of SBOMs was higher than if a tools
from different vendor’s are used for SBOM generation and analysis
(Figs. 2, 3, 4).

Employing the vendor Anchore’s tools to generate (Syft) and
analyze (Grype) the corpus of SBOMs resulted in the highest me-
dian number of reported vulnerabilities. Utilizing the vendor Aqua
Security’s tools to generate (Trivy𝐺 ) and analyze (Trivy𝐴) the cor-
pus of SBOMs resulted in the second highest median number of
reported vulnerabilities. When a different vendor was used to gen-
erate and analyze the corpus of SBOMs, the median number of
reported vulnerabilities was consistently low. This is exemplified
by the low numbers of vulnerabilities reported by CVE-bin-tool for
the corpora of SBOMs generated by Syft and Trivy𝐺 (Figs. 2, 3, 4).

The disparities in vulnerabilities found from the same analysis
tool on the same corpus of Docker Images when using Anchore’s
generation tool and Aqua Security’s analysis tool–or Aqua Secu-
rity’s generation tool and Anchore’s generation tool–are statisti-
cally (Fig. 4) and practically significant (Table 1), highlighting the
influence of the vendor responsible for developing the generation
and analysis tool on the number of vulnerabilities found in SBOMs.

When varying SBOM generation tool, the reported number of
vulnerabilities for identical Docker Images was rarely consistent.
With respect to Trivy𝐴 , only 12% of SBOMs in CycloneDX 1.5 yield
the same number of reported vulnerabilities across all tools. The
mean point estimate of reported vulnerabilities for SBOMs gen-
erated with Trivy𝐺 was 302.50 higher than in SBOMs generated
with Syft (Fig. 4A). The extent of the variability in the reported vul-
nerabilities is further shown (Fig. 2A and Fig. 3A) with differences
ranging from 94 fewer to 5,456 greater reported vulnerabilities
(standard deviation [SD] = 670).

Similar patterns were observed when analyzing SBOMs gener-
ated with different tools in the SPDX 2.3 format, with only 7% of
SBOMs found to have the same number of reported vulnerabilities.

The mean point estimate of reported vulnerabilities for SBOMs gen-
erated with Trivy𝐺 exceeded those generated with Syft by 400.30
(Fig. 4B). Similarly, the high variability in the reported vulnerabili-
ties is further demonstrated (Fig. 2B and Fig. 3B) with differences
ranging from 65 fewer to 6,058 greater reported vulnerabilities (SD
= 761).

With Grype, only 2% of SBOMs exhibited an identical number
of reported vulnerabilities when varying the generation tool in the
CycloneDX 1.5 format. The mean point estimate of reported vulner-
abilities for SBOMs generated with Syft exceeded those generated
with Trivy𝐺 by 441.57 (Fig. 4A). Again, the extent of variability is
shown (Fig. 2A and Fig. 3A) with differences ranging from 13 fewer
to 7,336 greater reported vulnerabilities (SD = 782).

In SPDX 2.3, just 2% of SBOMs yield the same number of reported
vulnerabilities by Grype. The mean point estimate of reported vul-
nerabilities reported for SBOMs generated with Syft was 470.30
higher those generated with Trivy𝐺 (Fig. 4B). The variability in
the reported vulnerabilities is further displayed (Fig. 2B and Fig.
3B) with differences ranging from 0 fewer to 7479 greater reported
vulnerabilities (SD = 915).

Finally, with respect to CVE-bin-tool reported vulnerabilities,
52% of CycloneDX 1.5 SBOMs yield identical reported vulnerabili-
ties (34% for SPDX 2.3). The mean point estimate of reported vulner-
abilities reported by CVE-bin-tool for SBOMs generated with Syft
was just 5.59 higher than the reported vulnerabilities for SBOMs
generated with Trivy𝐺 in CycloneDX 1.5 (Fig. 4A) and only 17
higher for SBOMs generated in SPDX 2.3 (Fig. 4B). A closer look at
Fig. 3A-B revealed that a large majority of SBOMs (CycloneDX 1.5:
96%, SPDX 2.3: 94%) reported vulnerabilities within the same range.
Additionally, a pragmatic assessment of the reported vulnerabili-
ties’ practical significance (Table 1), suggests negligible differences.
These reported vulnerabilities underscore the lower numbers of
vulnerabilities reported when using generation and analysis from
different vendors.

4.2 RQ2: What impact do SBOM formats have
on vulnerability detection in Docker
images?

SBOM format influences the SBOM analysis tools outcomes. Al-
though format effects may not be as pronounced as that of the
generation tool used, it remains a crucial factor. Inconsistencies
or ambiguities in these formats can lead to these discrepancies in
vulnerability reporting.

Analyzing the SBOMcorpuswith Trivy𝐴 , 83% of Trivy𝐺 -generated
SBOMs yield consistent reported vulnerabilities, while 19% of Syft
SBOMs exhibit consistent reported vulnerabilities. The mean point
estimate of reported vulnerabilities by Trivy𝐴 for SBOMs gener-
ated with Trivy𝐺 in CycloneDX 1.5 is 2.76 higher those in SPDX
2.3 (Fig. 7B), with differences ranging from 198 fewer to 0 greater
reported vulnerabilities (SD = 16). For SBOMs generated with Syft
in CycloneDX 1.5, the mean point estimate fell short of those in
SPDX 2.3 by 94.91 (Fig. 7A), with differences ranging from 4 fewer
to 2,104 greater reported vulnerabilities (SD = 244).

Analyzing the SBOMcorpuswithGrype, 32% of Trivy𝐺 -generated
SBOMs yield consistent reported vulnerabilities, while 90% of Syft-
generated SBOMs exhibit consistent reported vulnerabilities. The

https://github.com/MSUSEL/msusecl-sbom-generation-and-analysis-pipeline
https://github.com/MSUSEL/msusecl-sbom-generation-and-analysis-pipeline
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Figure 2: Symmetrical density plots depicting the distribution of reported vulnerabilities by Trivy𝐴, Grype, and CVE-bin-tool
across the SBOM collection when using SBOM generation tools Trivy𝐺 and Syft and holding SBOM format constant. Subplot A
holds format constant in CycloneDX 1.5, subplot B holds format constant in SPDX 2.3.

Figure 3: Sankey plots portraying changes in the sum of reported vulnerabilities by Trivy𝐴, Grype, and CVE-bin-tool. The
stacked bars colors denotes the sum of reported vulnerabilities reported for an SBOM built with the generation tools, Trivy𝐺
and Syft, indicated on the x-axis. Across stacked bars, each SBOM is represented by a thin line. Lines that connect bars of
different colors signify SBOMs which had different numbers of reported vulnerabilities when using Syft versus Trivy𝐺 . The
ranges in reported vulnerabilities associated with the color ramp were determined using Jenks natural breaks optimization
(see Methods). Subplot A holds format constant in CycloneDX 1.5, subplot B holds format constant in SPDX 2.3.

mean point estimate of reported vulnerabilities by Grype for SBOMs
generated with Trivy𝐺 in CycloneDX 1.5 fell short of those in SPDX
2.3 by 33.91 (Fig. 7B), with differences ranging from 3 fewer to 654
greater reported vulnerabilities (SD = 112). Similarly, for SBOMs
generated with Syft in CycloneDX 1.5, the mean point estimate

was 4.36 lower than in SPDX 2.3 (Fig. 7A), with differences ranging
from 0 fewer to 806 greater reported vulnerabilities (SD = 31).
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Figure 4: Mean point estimates and confidence intervals (95%) from bootstrap analysis comparing vulnerability detection by
SBOM analysis tools (Trivy𝐴, Grype, and CVE-bin-tool) when varying SBOM generation tool and holding format constant.
Differences were calculated as follows: pairwise subtracted reported vulnerabilities for Syft generated SBOMs from reported
vulnerabilities for Trivy𝐺 generated SBOMs. Subplot A holds format constant in CycloneDX 1.5, subplot B holds format constant
in SPDX 2.3.

Figure 5: Symmetrical density plots depicting the distribution of vulnerabilities by Trivy𝐴, Grype, and CVE-bin-tool across the
SBOM collection when using SBOM formats CycloneDX 1.5 and SPDX 2.3 and holding generation tool constant. Subplot A
holds generation tool constant as Syft, subplot B holds format generation tool constant in Trivy𝐺 .

Finally, when analyzing the SBOM corpus with CVE-bin-tool,
88% of Trivy𝐺 generated SBOMs show identical reported vulner-
abilities, while 57% of Syft SBOMs yield consistent reported vul-
nerabilities. The mean point estimate of reported vulnerabilities by
CVE-bin-tool for SBOMs generated with Trivy𝐺 in CycloneDX 1.5
was 3.51 lower than those in SPDX 2.3 (Fig. 7B), with differences
ranging from 22 fewer to 263 greater reported vulnerabilities (SD
= 19). Similarly, for SBOMs generated with Syft in CycloneDX 1.5,
the mean point estimate was 7.88 higher than in SPDX 2.3 (Fig. 7A),

with differences ranging from 328 fewer to 192 greater reported
vulnerabilities (SD = 28).

These descriptive statistics appear to suggest that SBOM formats
have an impact on vulnerability detection. However, investigating
the practical significance of these results reveals a different story.
Only when comparing Trivy𝐴 results for SBOMs generated with
Syft in CycloneDX 1.5 versus SPDX 2.3 we found practical signifi-
cance (Table 1). This is an instance where the vendor generating
and analyzing the SBOM corpus is different. As our results from
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Figure 6: Sankey plots portraying changes in the sum of reported vulnerabilities by Trivy𝐴, Grype, and CVE-bin-tool. The
stacked bars colors denotes the sum of reported vulnerabilities reported for an SBOM built with formats, CycloneDX 1.5 and
SPDX 2.3, indicated on the x-axis. Across stacked bars, each SBOM is represented by a thin line. Lines that connect bars of
different colors signify SBOMs which had different numbers of reported vulnerabilities when using CycloneDX 1.5 versus
SPDX 2.3. The ranges in reported vulnerabilities associated with the color ramp were determined using Jenks natural breaks
optimization (see Methods). Subplot A holds generation tool constant as Syft, subplot B holds format generation tool constant
in Trivy𝐺 .

Figure 7: Mean point estimates and confidence intervals (95%) from bootstrap analysis comparing vulnerability detection by
SBOM analysis tools (Trivy𝐴, Grype, and CVE-bin-tool) when varying SBOM format and holding generation tool constant.
Differences were calculated as follows: pairwise subtracted reported vulnerabilities for CycloneDX 1.5 SBOMs from reported
vulnerabilities for SPDX 2.3 SBOMs. Subplot A holds generation tool constant as Syft, subplot B holds format generation tool
constant in Trivy𝐺 .
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Table 1: Cohen’s D values measuring the effect size of variation in vulnerability detection by SBOM analysis tools when varying
SBOM generation tool and format. We calculated values as follows: Rows 1 and 2, subtracted mean reported vulnerabilities for
Syft generated SBOMs from mean reported vulnerabilities for Trivy𝐺 generated SBOMs and divided by their pooled standard
deviation. Rows 3 and 4, subtracted mean reported vulnerabilities for SPDX 2.3 SBOMs from mean reported vulnerabilities for
CycloneDX 1.5 SBOMs and divided by their pooled standard deviation. Cohen’s D values can be interpreted as follows: small (d
= 0.2), medium (d = 0.5), and large (d = 0.8) [29].

TrivyA Grype CVE-bin-tool
Syft - TrivyG (CDX) 0.53 0.59 0.03
Syft - TrivyG (SPDX) 0.74 0.64 0.09
CDX - SPDX (Syft) 0.53 0.004 0.002
CDX - SPDX (TrivyG) 0.003 0.17 0.02

RQ1 show this could be the cause of this variability and not due to
format. Although using different SBOM formats does cause vari-
ability in vulnerability reporting, the effect size of the variability is
small, especially in comparison to the generation tool.

5 Discussion
Security practitioners need confidence in the SBOMs they are build-
ing to assess SSC security. Understanding the impact that SBOM
generation tools and SBOM formats have on vulnerability reporting,
is crucial to effectively secure SSCs.

Building SBOMs is a particularly challenging objective due to
the complexity of SSCs and SBOM generation. More specifically,
SBOM generation tools have the challenging objective of captur-
ing dependencies within SSCs for a given software artifact. The
observed high variability in reported vulnerabilities when using
different SBOM generation tools (Figs. 2, 3, 4) illustrates this chal-
lenge. SBOM formats are complex because they need to provide
support for storing SBOMs that enable accurate vulnerability de-
tection. As demonstrated in our study, variations in SBOM formats
(Figs. 5, 6, 7) can introduce variability in vulnerability detection
outcomes, further complicating risk assessment efforts for security
practitioners.

With respect to SBOM generation tools, we posit that the ob-
served variability could be attributed to the vendor used for the
generation of the SBOM in combination with the vendor used for
the analysis of the SBOM. As SBOMs are difficult to create, de-
velopers who possess insights into the SBOM build process can
more effectively construct analysis tools that get the maximum
information out of the SBOM.

Concerning the SBOM format, we posit that differences in vul-
nerability reporting when varying SBOM format came from in-
consistencies or ambiguities in the formats. For example, there are
disagreements between CycloneDX 1.5 and SPDX 2.3 on which field
supplier information should be placed [17]. This can lead to analysis
tools not being able to find supplier names. As the supplier name is
used for CPE matching, this reduces the analysis tool’s ability to
report vulnerabilities. These inconsistencies and others reduce the
ability of SBOM analysis tools to report consistent vulnerability
reported vulnerabilities.

The observed variability from varying SBOM generation meth-
ods decreases our confidence in the SBOMs being built with popular
tools and formats. In turn, this hampers confidence in leveraging
SBOM technology for enhanced SSC security.

5.1 Implications for Practitioners and End Users
SBOM is a promising SSC security solution that enables practi-
tioners and end-users to quickly mitigate software supply chain
security risks [26] [27]. The variability in tool output demonstrates
that neither of the popular SBOM generation tools (Syft and Trivy𝐺 )
or SBOM formats (CycloneDX 1.5 and SPDX 2.3) have solved the
complex challenge of building SBOMs that enable consistent vul-
nerability reporting. Variability from SBOM generation methods
presents a multifaceted challenge for practitioners and end-users
alike, casting a shadow of uncertainty over the reliability and trust-
worthiness of SBOMs. While these tools and formats are promising,
it is clear the SBOM space is immature. Extensive development,
validation, and verification of both SBOM generation tools and
formats are required to improve the usefulness of SBOMs for SSC
security.

Moreover, our research highlights the inherent risks associated
with blindly trusting the outputs of SBOM generation tools and
formats merely based on their popularity and industry standing.
We reveal a potentially dangerous gap between perceived reliabil-
ity and actual performance, underscoring the need for cautious
skepticism and rigorous evaluation in adopting these technologies.
Software developers and security practitioners must recognize that
popularity and industry recognition alone do not guarantee the
accuracy and consistency of vulnerability reports derived from
SBOMs. While SBOM provides a promising solution to the difficult
challenge of securing SSCs, it is clear that a meticulous approach
involving thorough scrutiny and validation of SBOMs is essential
to ensure the integrity and effectiveness leveraging SBOM for SSC
security measures.

6 Threats to Validity
Threats to the validity of this study rest in the selected SBOM
generation and analysis tools. We examine four different types
of threats to validity: construct validity, content validity, internal
validity, and external validity; which are based on the classification
scheme of Cook, Campbell and Day [30] and of Campbell et al. [31].

In this study construct and content validity refer to the meaning-
fulness of the measurements produced by the SBOM analysis tools
Trivy𝐴 , Grype, and CVE-bin-tool. These tools produce vulnerability
counts that are present in SBOMs, we use these counts to assess
variability introduced by SBOM generation. Recent studies [15]
find that different versions of the same static analysis tool often
produce different results across the same input. It is possible that
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we selected versions of the analysis tool that contained bugs thus
giving inaccurate results. In order to mitigate this threat, a system-
atic analysis of all versions of each SBOM analysis tool over a large
corpus of SBOMs is needed. We hope to perform such analysis in
the future as discussed in the future work section.

Internal validity refers to cause and effect relationships between
independent and dependent variables [32]. The independent vari-
ables in this study include both the SBOM generation tool as well
as the SBOM format. Our dependent variable is the reported vulner-
abilities reported by selected SBOM analysis tools. As with analysis
tools there is the possibility of the selected generation tool versions
to contain bugs. This could result in incomplete or incorrect SBOMs,
leading to discrepancies in vulnerability reporting. Additionally, the
SBOM analysis tools each use their own internal database which
pulls frommultiple data sources i.e. Redhat14, Gitlab Advisory Data-
base15. It is possible that depending on when internal databases
are updated it could lead to different reported vulnerabilities that
are not attributed to SBOM generation tool or SBOM format. To
mitigate this threat each SBOM was run concurrently through the
analysis tools.

An important potential threat to internal validity to discuss is
the high dropout rate of SBOMs, where 43.7% of the Docker images
were excluded due to failures in the SBOM analysis tool process,
with most of these failures attributed to CVE-bin-tool. The dropout
rate could potentially bias the results if the excluded SBOMs differ
systematically from those that were successfully analyzed. However,
we determined that retaining CVE-bin-tool in the analysis was
necessary to maintain the diversity of analysis tools.

External Validity refers to the ability to generalize results. Whilst
this study attempts to be broad and cover a wide range of software,
we only analyzed SBOMs generated from 100 unique docker im-
ages and ∼25 versions of those images. To mitigate this threat, a
larger dataset would allow us to randomly sample SBOMs from
multiple software domains and statistically generalize conclusions
to larger populations. Additionally we only assessed the impacts of
two SBOM generation tools on three SBOM analysis tools. Expand-
ing the corpus of both SBOM generation tools as well as SBOM
analysis tools would enable us to further generalize the impacts of
SBOM generation tool on SBOM analysis tool’s ability to report
vulnerabilities.

7 Future Work
Potential areas for future work include the validation of the SBOMs
being generated by Syft and Trivy𝐺 . This will include the collection
of software artifacts and obtaining a ground truth for each artifact of
what the SBOM should contain, then comparing this ground truth
against the SBOMs generated by Syft and Trivy𝐺 . Additionally,
expanding the corpus of SBOM generation tools would allow us to
further generalize their impacts and develop a deeper understanding
of how vendor of the generation tool and analysis tool plays a role
in vulnerability detection.

Another interesting area of exploration is investigating what
dependencies are commonly missed by SBOM generation tools as
well as a broader assessment of the most used dependencies across

14https://access.redhat.com/documentation/en-us/red_hat_security_data_api
15https://advisories.gitlab.com/about/index.html

an SBOM corpus. This is important as it would enable security
practitioners to better understand potential attack targets present
in their systems.

Finally, investigations that explore how software quality mod-
eling techniques could be used to help address variability when
using different SBOM generation tool, analysis tool combinations
are of the utmost interest. Integrating multiple SBOM analysis tools
into a single model would assist in having the broadest coverage of
vulnerabilities. Additionally utilizing multiple analysis tools could
possibly lessen the impacts from the SBOM generation tool vendor.

8 Conclusion
Our study delves into Software Bill Of Materials (SBOM), a critical
technology in software supply chain (SSC) security. Through the
analysis of a large and diverse corpus of Docker images, we’ve
uncovered how SBOM generation tools and formats impact vulner-
ability reporting within the microservice domain. We emphasize
the substantial role of SBOM generation tools in vulnerability detec-
tion, showcasing significant variability in outcomes. Additionally,
SBOM formats exert influence. Their impact is less significant but
still affects consistent vulnerability reporting. These insights hold
significance for practitioners and end-users, illuminating the chal-
lenges in constructing dependable SBOMs for SSC security and
emphasizing the necessity for rigorous validation and enhance-
ment within the SBOM space.
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