13th NASA VLSI Design Symposium

Systems Session

Off-Chip Coaxial to Microstrip Transition Using MEMs Trench

Brock J. LaMeres & Chris McIntosh Montana State University Bozeman, MT

Motivation

- Package interconnect limits performance in VLSI systems
- This is caused by :

Electrical parasitics of the package interconnect
 On-chip technology outpacing off-chip technology

Why is packaging limiting performance?

Today's Package Interconnect Looks Inductive

• Today's Package Impedance is Not Controlled

Why is packaging limiting performance?

Transistor Technology is Outpacing Package Technology

Problem : Packaging Limits Performance

Transistor Technology is Faster than Package Technology

"Off-Chip Coaxial to Microstrip Transition Using MEMs Trench"

Proposed Solutions – New Interconnect Technology

• Coaxial to Microstrip Launch

- Use MEMs process technology
- Target System on Package (SoP) applications

- On-Chip = Microstrip Transmission Line
- Off-Chip = Coaxial Transmission Line
- A MEMs trench is used to :
 - mechanically support the coax
 - align the conductors
 - provide return path connection

- MEMs launch achieved using standard *Etch Growth Release* process
- Experience with this type of process at the Montana Microfabrication Facility (MMF)

- assuming a commercially available wire (42, 46, 50 AWG)
- 50Ω impedance requirement sets coaxial dimensions
- extension diameters dictated by mechanical reliability

Geometric Dependencies - Trench

- the trench must be wide enough to accept the coaxial outer diameter
- the depth must place the coaxial center conductor on top of the microstrip trace
- using inscribed octagonal geometries sets dimensions for trench

Geometric Dependencies – Channel Spacing

- spacing of adjacent trenches must accommodate coax protrusion

Geometric Dependencies – On Chip Trace

- dimension of microstrip transmission line is dictated by :

1) 50 Ω Impedance requirement

2) Height from bottom of trench to bottom of coax center conductor

Impedance Concerns

- between the coax and microstrip T-lines, there are regions of impedance discontinuities
- these should be understood but are small relative to the overall interconnect length

Spatial Evaluation

- is this interconnect at least as small or smaller than current interconnect?
- we evaluate against 100µm x 100µm pad requirements for wire bond and flip-chip

Results

- 42 and 46 AWG wires require more silicon area than traditional 100 µm pad (141% & 47%)
- 50 AWG wire requires 17% less area

Par	Units	Wire Bond	Flip Chip		Coaxial Line	
				42 _{AWG}	46 _{AWG}	50 _{AWG}
D _{cc}	μm		_	64	41	25
D _{OD}	μm	-	-	214	137	84
Doc	μm		-	230	<mark>1</mark> 47	90
T _{ms}	μm	- 1		10	10	10
Wms	μm	- 1	- 1	64	41	25
Hms	μm	=	=	41	29	20
Wtbot	μm	<u></u>	-	95	61	37
Ht	μm	-		73	43	23
H _{tsw}	μm		-	103	61	32
Wtsw	μm		-	73	43	23
Wttop	μm		- <	241	147	83

Electrical Evaluation

- we need to evaluate if this type of interconnect is worth pursuing electrically
- first order FEA modeling was done in Ansys
- results are compared to traditional SoP interconnect (wire bond and flip-chip)
- we look at unit Capacitance, Inductance, and Impedance between the different interconnect options

Electrical Evaluation

- interconnect comparison
 coax length = 5mm
 wire bond length = 5mm
 - \cdot FC bump height = 75um

Results

- versus **wire bond**:

parasitics reduced: $L \rightarrow -57\%$ $C \rightarrow -73\%$

- versus flip chip:

parasitics higher Zo dropped from: 148Ω to 50Ω

NOTE: first order FEA modeling was done in Ansys

Summary

1) A new SoP interconnect was presented and compared to current technology

- Coaxial to Microstrip launch using MEMs trench

2) Spatially this interconnect has the potential to require less perimeter area

3) Electrically this interconnect has the potential perform faster

- less parasitic L and C
- ability to control impedance

4) Next Steps

- full wave FEA
- prototype assembly and measurement

Questions?

