DesignConEast 2005

Track 6: Board and System-Level Design (6-TA4)

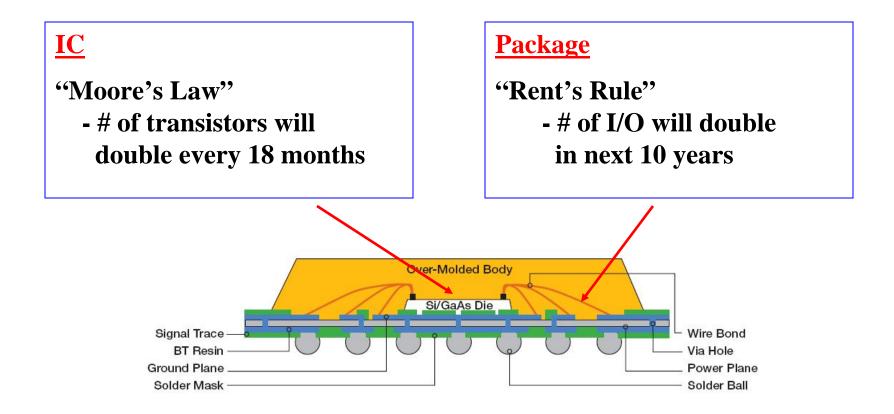
Performance Model for Inter-chip Busses Considering Bandwidth and Cost

Authors: Brock J. LaMeres,

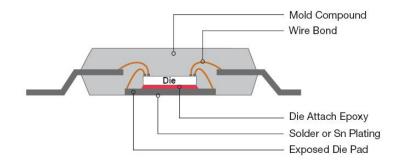
University of Colorado /

Sunil P. Khatri

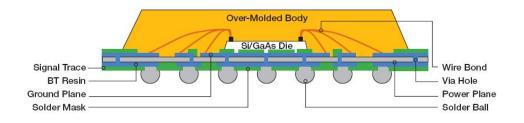
Texas A&M University


Problem Statement

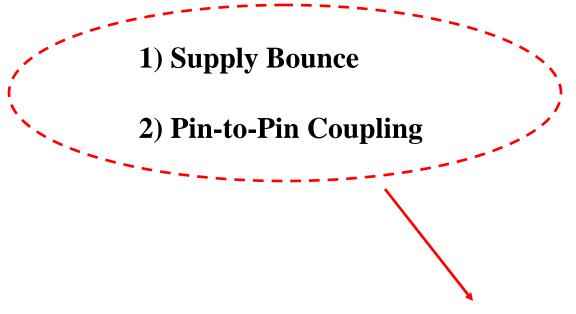
- Performance in VLSI Systems is Limited by Noise from the Package
- An Analytical Model for System Performance is needed for:
 - 1) CAD/CAE
 - 2) Quick Hand Calculations


Agenda

- 1) Problem Motivation
- 2) Analytical Model Development
- 3) Simulation Results
- 4) Example Use Model


• Transistor Technology is Faster than Package Technology

• Today's Packages Have Inductive Parasitics



QFP – Wire Bond (~4.5nH)

BGA – Wire Bond (~3.7nH)

• Inductive Interconnect Causes Noise When Signals Switch:

Simultaneous Switching Noise (SSN)

1) Supply Bounce

• Switching current through inductive packaging induces voltage:

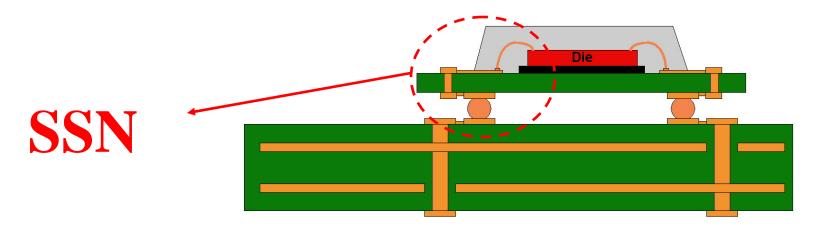
$$V_{bnc} = L \cdot \left(\frac{di}{dt}\right)$$

L = Inductance of pwr/gnd pin that current is being switched through.

• Multiple Signals Switching Increase the Problem:

$$V_{bnc} = L \cdot \sum_{i}^{n} \left(\frac{di}{dt} \right)$$

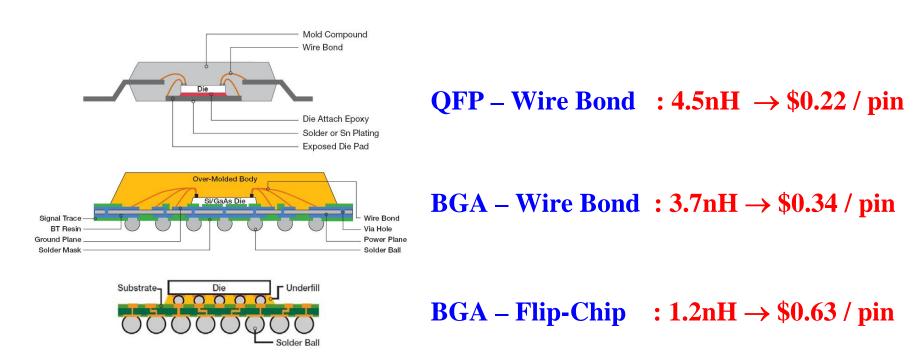
n = # of drivers
sharing the power/gnd
pin (L).


2) Pin-to-Pin Coupling

Switching Signals Couple Voltage onto Neighbors:

• Multiple Signals Switching Increase the Problem:

$$V_{couple} = \sum_{1}^{k} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$


• Package Inductance Creates Simultaneous Switching Noise

• SSN in Package Limits di/di

 $\frac{di}{dt} \propto SSN$

Aggressive Package Design will Reduce Inductance

- But is Expensive
 - 95% of VLSI design-starts are wire-bond

- Modern Design Practice
 - 1) Acceptable SSN Limits are Defined.
 - 2) Fastest (di/dt) is selected that doesn't violate limits.
- Limitations of Approach
 - SPICE is used to evaluate SSN.
 - This takes too much time.
 - The entire range of variables cannot be evaluated quickly (package, # of pwr/gnd, bus width, etc...).

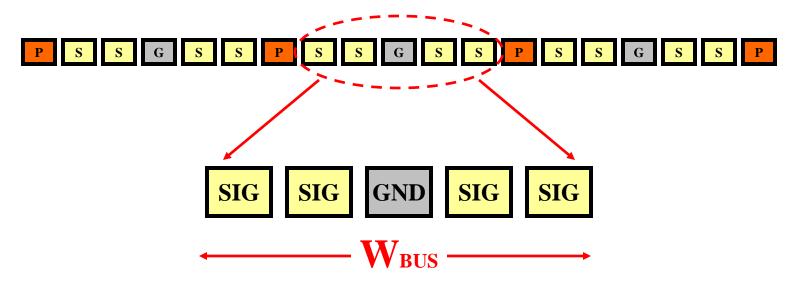
- We need an *Analytical Model* to Evaluate Off-Chip Bus Performance
 - 1) Package Parasitics
 - 2) Package Cost
 - 3) Bus Width
 - 4) # of Power/Grounds
- This can be used to find Optimal Bus Configuration

"Desired Performance for the Least Cost"

• Test Circuit Topology

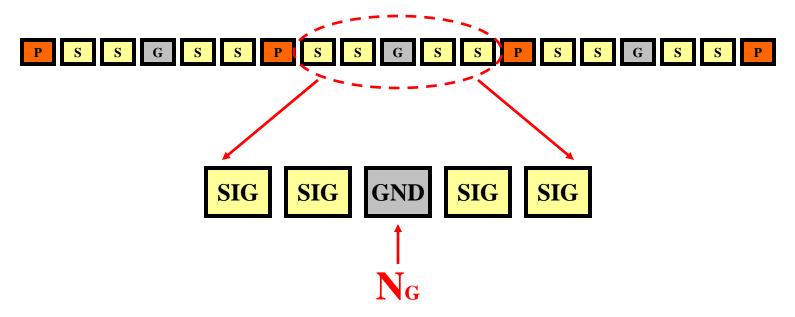
- 0.1um CMOS Tx/Rx
- +1.5v Vdd, 0.35 Vt
- 25mA Drive Strength
- Series Terminated

• Failure Modes


Power Supply Droop

Signal Coupling

Ground Bounce


Power Supply Droop = Ground Bounce

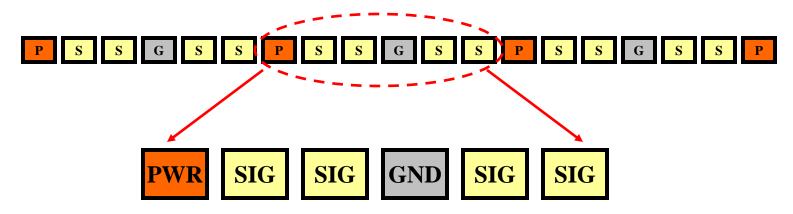
Bus Parameters

W_{BUS}: # of Signals Per Bus Segment of Interest

• Bus Parameters

N_G: # of Grounds Per Bus Segment of Interest

Bus Parameters



Repetitive Pattern of Signal, Power, and Ground Pins

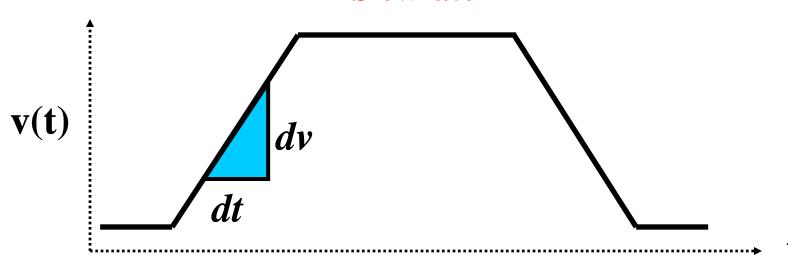
SPG: (# of Signals): (# of PWR's): (# of GND's)

SPR: SPG Ratio

• Bus Parameters

Example:

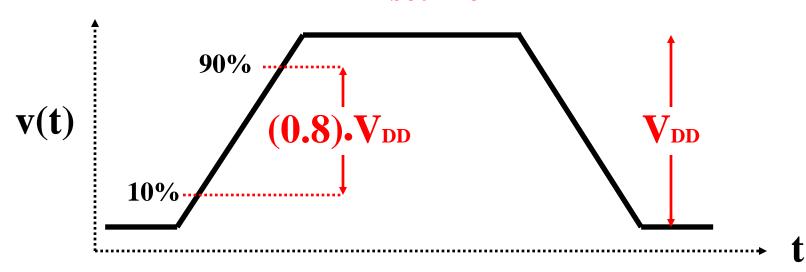
 $\mathbf{W}_{\mathrm{BUS}}$: 4


 N_G : 1

SPG: 4:1:1

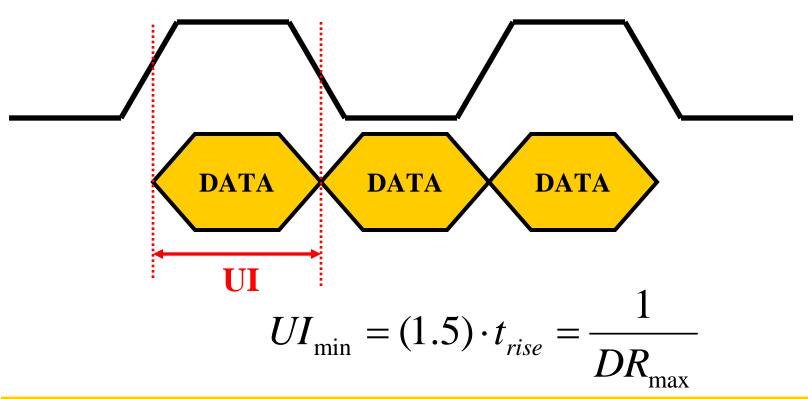
SPR : 4

• Bus Performance Description

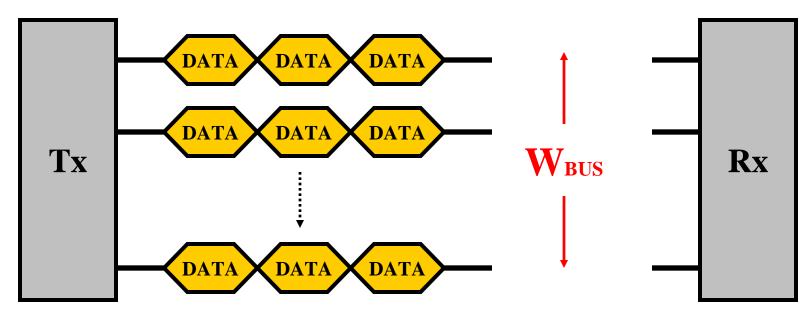

Slewrate

$$slewrate = \left(\frac{dv}{dt}\right) = \left(\frac{di}{dt}\right) \cdot Z_{load}$$

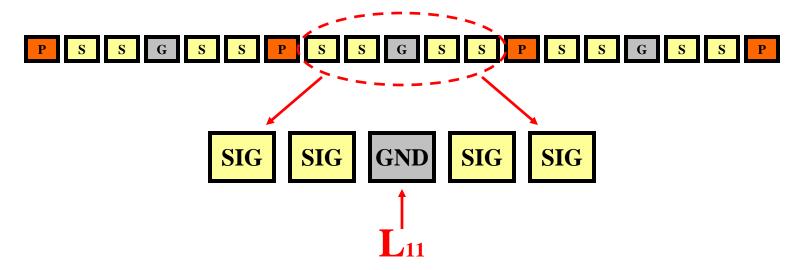
• Bus Performance Description


Risetime

$$t_{rise} = \frac{(0.8) \cdot V_{DD}}{slewrate}$$

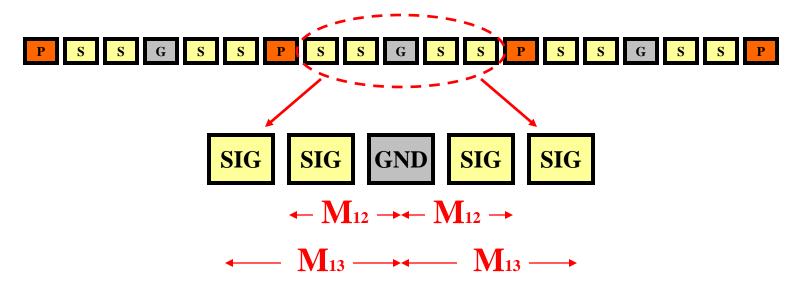

• Bus Performance Description

Minimum Unit Interval


• Bus Performance Description

Bus Throughput

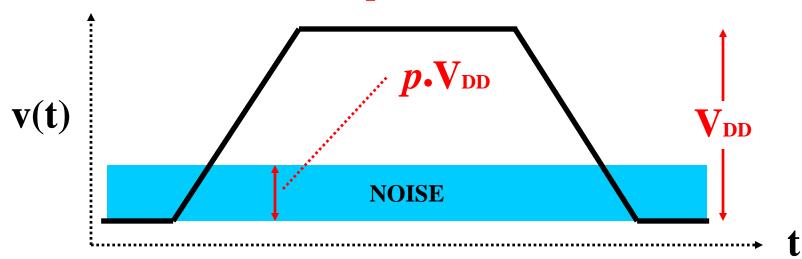
$$TP_{\max} = W_{BUS} \cdot DR_{\max}$$


• Bus Performance Limits

L₁₁ : Self Inductance of Ground Path

$$V_{bnc_{self}} = L_{11} \cdot \sum_{1}^{W_{bus}} \left(\frac{di_1}{dt} \right)$$

Bus Performance Limits



M_{1k}: Mutual Inductance Between Pins

$$V_{bnc_{couple}} = \sum_{2}^{W_{bus}} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

Bus Performance Limits

Maximum Acceptable Ground Bounce

$$V_{bnc-MAX} = p \cdot V_{DD}$$

$$(p_{typical} = 5\%)$$

Model Development

Maximum Ground Bounce

$$V_{gnd-bnc} = p \cdot V_{DD} = \begin{pmatrix} W_{bus} \cdot L_{11} \\ N_{g} \end{pmatrix} \begin{pmatrix} di \\ dt \end{pmatrix} + \sum_{k=2}^{W_{bus}} \begin{pmatrix} M_{1k} \frac{di}{dt} \end{pmatrix}$$

$$Self \qquad Coupling$$

$$Contribution \qquad Contribution$$

Model Development

Maximum Slewrate

$$\left(\frac{dv}{dt}\right)_{\text{max}} = \frac{p \cdot V_{DD} \cdot Z_{load}}{\left(\frac{W_{bus} \cdot L_{11}}{N_g}\right) + \sum_{k=2}^{W_{bus}} M_{1k}}$$

- pull out (di/dt)
- convert to (dv/dt)

Model Development

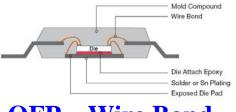
Minimum Risetime

$$t_{rise-min} = \frac{\left(0.8\right) \cdot \left[\left(\frac{W_{bus} \cdot L_{11}}{N_g}\right) + \sum_{k=2}^{W_{bus}} \left(M_{1k}\right)\right]}{p \cdot Z_{load}}$$

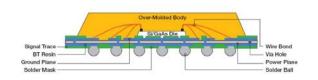
- convert slewrate to risetime

Model Development

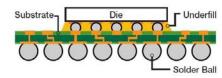
Maximum Datarate


$$DR_{\text{max}} = \frac{p \cdot Z_{load}}{(1.5) \cdot (0.8) \cdot \left[\left(\frac{W_{bus} \cdot L_{11}}{N_g} \right) + \sum_{k=2}^{W_{bus}} M_{1k} \right]}$$

- convert Risetime to Datarate

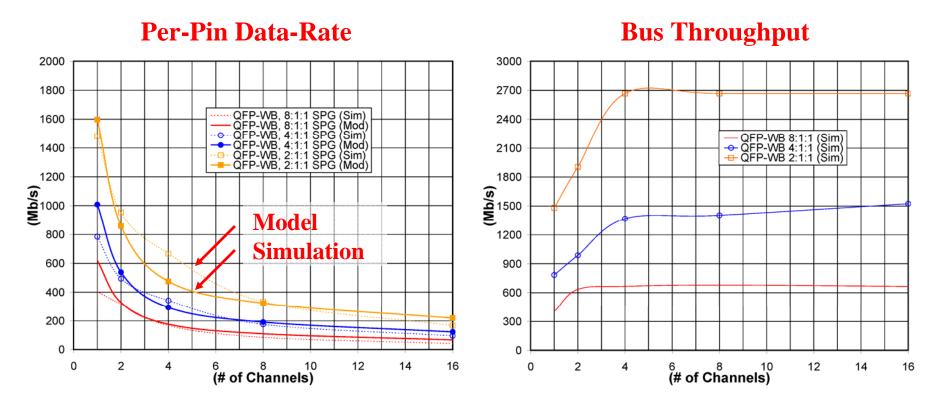

Maximum Throughput

$$TP_{\max} = W_{BUS} \cdot DR_{\max}$$


• SPICE Simulations were Performed on Three Packages

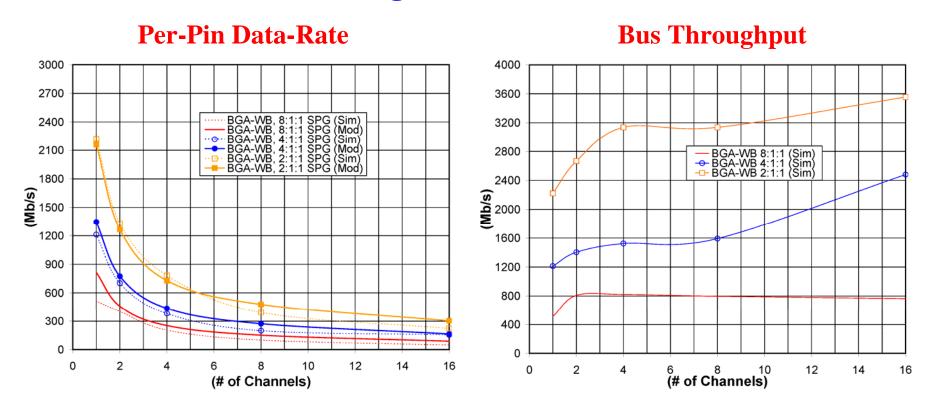
QFP – Wire Bond

BGA - Wire Bond

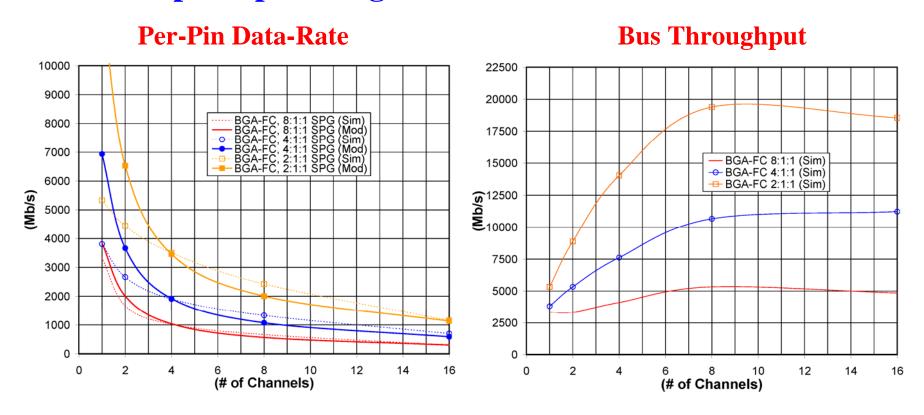


BGA – Flip-Chip

Package	L_{11}	K ₁₂	K_{13}	K_{14}	K ₁₅	K ₁₆
QFP-wb	4.550n	0.744	0.477	0.352	0.283	0.263
BGA-wb	3.766n	0.537	0.169	0.123	0.097	0.078
BGA-fc	1.244n	0.630	0.287	0.230	0.200	0.175


Package	Cost Per-Pin
QFP-wb	\$0.22
BGA-wb	\$0.34
BGA-fc	\$0.63

• QFP Wire-Bond Package Simulations


- Throughput reaches an asymptotic limit as channels are added

BGA Wire-Bond Package Simulations

- Level 1 : BGA Increases Performance Over QFP

• BGA Flip-Chip Package Simulations

- Level 2: Flip-Chip Increases Performance Over Wire-Bond

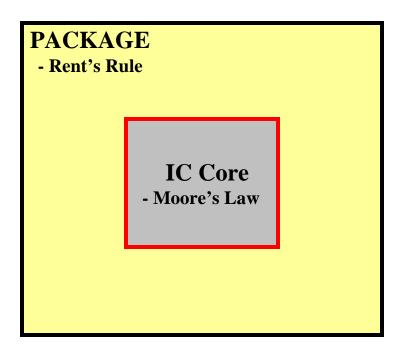
Cost Must Also Be Considered in Analysis

Bandwidth Per Cost

$$BPC = \left(\frac{TP}{Cost_{bus} \cdot 1e^{6}}\right) \quad \text{Units} = \text{(Mb/\$)}$$

• This Metric Represents "Cost Effectiveness of the Bus"

• Cost per Bus Configuration


		Number of Channels				
Bus Configuration	1	2	4	8	16	
QFP-WB 8:1:1	0.66	0.88	1.32	2.20	4.40	
QFP-WB 4:1:1	0.66	0.88	1.32	2.62	5.28	
QFP-WB 2:1:1	0.66	0.88	1.76	3.52	7.04	
\$ BGA-WB 8:1:1	1.02	1.36	2.04	3.40	6.80	
BGA-WB 4:1:1	1.02	1.36	2.04	4.08	8.16	
BGA-WB 2:1:1	1.02	1.36	2.72	5.44	10.88	
BGA-FC 8:1:1	1.89	2.52	3.78	6.30	12.60	
BGA-FC 4:1:1	1.89	2.52	3.78	7.56	15.12	
BGA-FC 2:1:1	1.89	2.52	5.04	10.08	20.16	

• Performance Increases with Cost (Package, SPG)

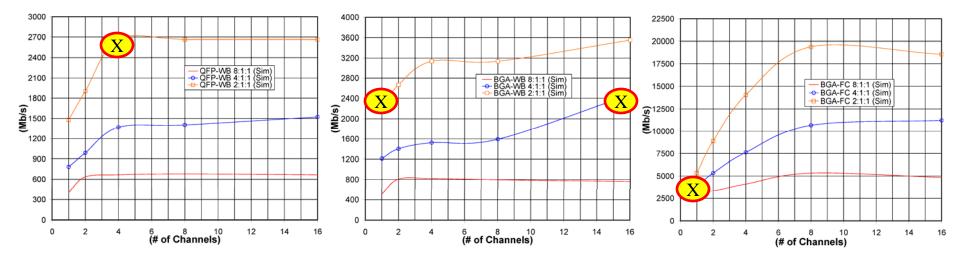
• Bandwidth Per Cost Results

	Number of Channels				
Bus Configuration	1	2	4	8	16
QFP-WB 8:1:1	612	722	505	309	152
QFP-WB 4:1:1	1188	1122	1036	532	289
QFP-WB 2:1:1	2245	2165	1515	758	379
BGA-WB 8:1:1	503	594	402	234	112
BGA-WB 4:1:1	1188	1032	747	390	304
BGA-WB 2:1:1	2179	1961	1153	577	327
BGA-FC 8:1:1	1764	1323	1085	847	385
BGA-FC 4:1:1	2016	2116	2016	1411	743
BGA-FC 2:1:1	2822	3527	2785	1924	920

Faster Narrower Busses = More Cost Effective

On-Chip

- 8 bit Data Bus
- 300 Mb/s


Package

- Need

$$(8)(300M) = 2400 Mb/s$$

Need:

2400 Mb/s

QFP – Wire Bond

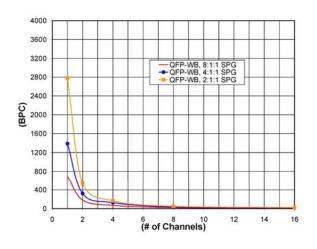
- 4 bits wide, SPG=2:1:1

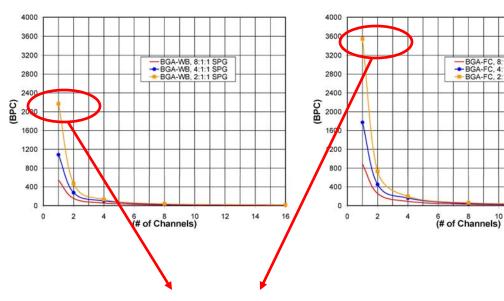
BGA - Wire Bond

- 1 bit wide, SPG=2:1:1
- 16 bits wide, SPG=4:1:1

BGA – Flip-Chip

- 1 bit wide, SPG=2:1:1
- 1 bit wide, SPG=4:1:1
- 1 bit wide, SPG=8:1:1


Cost of Each Bus Configuration


	Number of Channels					
Bus Configuration	1	2	4	8	16	
QFP-WB 8:1:1	0.66	0.88	1.32	2.20	4.40	
QFP-WB 4:1:1	0.66	0.88	1.32	2.62	5.28	
QFP-WB 2:1:1	0.66	0.88	1.76	3.52	7.04	
BGA-WB 8:1:1	1.02	1.36	2.04	3.40	6.80	
BGA-WB 4:1:1	1.02	1.36	2.04	4.08	8.16	
BGA-WB 2:1:1	1.02	1.36	2.72	5.44	10.88	
BGA-FC 8:1:1	1.89	2.52	3.78	6.30	12.60	
BGA-FC 4:1:1	1.89	2.52	3.78	7.56	15.12	
BGA-FC 2:1:1	1.89	2.52	5.04	10.08	20.16	

Most Cost Effective:

- BGA-WB
 - $\mathbf{W}_{\text{bus}} = \mathbf{1}$
 - -SPG = 2:1:1

• Bandwidth-per-Cost of Each Bus Configuration

Higher BPC = More Headroom

Summary

- 1) Package Noise Limits System VLSI Performance
- 2) An Analytical Model was Presented to Predict Bus Performance
- 3) Datarate Approaches an Asymptotic Limit as Channels are Added
- 4) Throughput Can be Achieved Using Different Bus Configurations

Questions?