2009 IEEE Aerospace Conference

Big Sky, MT March 11, 2009 Session# 7.04 Reconfigurable Computing Architectures for Aerospace Applications Pres #: 7.0402 Paper ID: 1071 Rm: Jefferson Time: 8:55am

Dynamic Reconfigurable Computing Architecture for Aerospace Applications

Brock J. LaMeres & Clint Gauer Department of Electrical and Computer Engineering

Motivation

Radiation-Hardness for Aerospace Systems

- Cosmic radiation induces transients in integrated circuits
- Commercial processes are susceptible to Singe-Event-Upsets (SEUs)
- Aerospace systems must address this additional constraint

Mitigation Techniques

- A variety of approaches are used to achieve radiation-hardness:

1) Radiation by Architecture

- Triple Modulo Redundancy, Fault Recovery Processes, COP

2) Radiation by Design/Process

- Substrate doping, Enclosed Layout Transistors, isolation trenches

Motivation

The Drawback of Rad-Hard Processors

Radiation-Hardness translates into slower performance and more power consumption

Motivation

Programmable Logic

- Advances in programmable logic fabrication (specifically FPGAs) has enabled new solutions to the needs of the Aerospace industry

Opportunities for FPGAs in Aerospace

- 1) Radiation Hardness through TMR
 - Designers can easily add as much or as little redundancy as needed
- 2) Performance through multi-processors
 - Easy to add parallel processing until design performance is achieved
- 3) Reduction in Flight Spares
 - Common platforms can be used for multiple systems
 - This allows a common replacement platform which means less spare mass
- 4) Dynamic Reconfiguration
 - Real time configuration can be used to optimized for the current application

Our Approach

Dynamic Reconfiguration Based on Radiation Environment

- 1) A system that uses information about whether radiation is present or not
 - Implemented on an FPGA allows the system to reconfigure based on its environment
- 2) An SEU radiation sensor integrated with the FPGA
 - Silicon based, double-sided strip detector feasibility has been demonstrated for nuclear physics

3) System Optimization in Real-Time

- FPGA can reconfigure to achieve different performance objectives based on environment
- "Radiation Tolerant" TMR added if necessary
- "High Performance" parallel processing added as necessary
- "Low Power" hardware minimized if necessary

System Design

Prototype Hardware

- 1) We have evaluated this technique using a Xilinx Virtex-5 Eval Platform (ML507)
- 2) A simple peripheral controller application was used - Reading PS2 keyboard and writing to an LCD
- 3) The picoBlaze soft processing core was used to accomplish the computing task
- 4) Dynamic reconfiguration accomplished using SystemACE

System Design

Modes of Operation

- Mode 1: Parallel Processing
- Mode 2: Low Power
- Mode 3: Radiation Tolerant

1) Parallel Processing Mode

- If No Radiation is present

- the FPGA can be configured with multiple processors to increase performance
- each processor is assigned a specific task and has different code-lines
- each processors has routine for reconfiguration based on signal from external radiation sensor

2) Low Power Mode

- If No Radiation is present

- the FPGA can be configured with a single processor that accomplishes each task in a sequential manner
- The processor has a routine for reconfiguration based on signal from external radiation sensor

3) Radiation Tolerant Mode

- If **Radiation** is present

- the FPGA can be configured with TMR on three processors
- A voter is used to monitor for proper operation on memory interface
- A recovery algorithm is used to resync and reinitialize the processors if the voter detects an error.

3) Radiation Tolerant Mode

- Recovery Process

- Upon error detection, the voter sets flag in processors using IRQ
- after current task completion, the uP's off-load their variable information to rad-hard storage devices
- The TMR state machine then resets all processors
- Upon start-up, each processors initializes its variables using data from rad-hard variable storage device

Chipscope View of Fault Recovery

• Single Fault

Bus/Signal	х	0	
⊶ Address 1	21D	21D	218 X 219 X 218 X219 000 001 X 002 X 003 X 004 X 005 X 006 X
⊶ Address 2	0D8	0D8	<u>0D8 X 0D9 X 0DA X 000 X 001 X 002 X 003 X 004 X 005 X 006 X</u>
← Address 3	0D8	0D8	<u>0D8 X 0D9 X 0DA X 000 X 001 X 002 X 003 X 004 X 005 X 006 X</u>
⊶ Instruction 1	35610	35610	<u>, X 1CE01 X 35618 X 1CE01 X X 0010</u> X 2C109 X 00100 X 00200 X 00300 X 00400 X 301E5
⊶ Instruction 2	2A000	2 A 000	. <u>X 00101 X 2C109 X 3400</u> A <u>X 0010</u> 0 X 2C109 X 00100 X 00200 X 00300 X 00400 X 301E5
⊶ Instruction 3	2 A 000	2 A 000	<u>, X 00101 X 20109 X 340D</u> A X 00100 X 20109 X 00100 X 00200 X 00300 X 00400 X 301E5
-Fault Flag	1	1	
-Recover Don	0	0	
🗢 State Value	2	2	2 X 0 X

• Continuous Fault

Bus/Signal	х	0	Į	0 5 7		10		0	5		1
⊶ Address 1	213	213		213	001	002 (003	3 <u>X 004 X</u>	2	1D)02
⊶ Address 2	0D8	0D8		OD8 X OD9 X ODA	X 000	<u>) 001 (002</u>	2 <u>(003)</u>			<u> X 000 X 0</u>)01
⊶ Address 3	0D8	0D8		OD8 X OD9 X ODA	000) 001 X 002	2 <u>)</u> 003 <u>)</u>	0D8 (0D9)01
◦ Instruction 1	3561:	3561:		35612	- X20	<u>, 109 (00100 (</u>	00200 🔪	3	3561C	2C109	χ
⊶ Instruction 2	2 A 00)	2 A 00)		<u>X 00101 X 2C109 X 340</u>	IDA (OC	100 (20109)	00100 🔪	(00101)	20109 34	0DA (00100	χ
⊶ Instruction 3	2 A 00)	2 A 00)		<u>X 00101 X 2C109 X 340</u>	IDA (OC	100 (20109)	00100 X X	(00101)	20109 34	0DA (00100	X
-Fault Flag	1	1	-								
-Recover Don	0	0	_								
⊶ State Value	2	2		2 🔨		1X	2	2	χοχ	1	

Reconfiguration Process

- Dynamic Reconfiguration Between Modes

- Each design is stored in System ACE configuration memory
- Each design monitors *radiation sensor* for a "change in mode" signal.
- If reconfiguration is needed, each design off-loads its variable information to rad-hard storage device
- Upon start-up, each design initializes its variables using data from rad-hard variable storage device

System Performance

• Timing Impact of Important System Events

System Event	Timing Dependencies	Total Time
Initial Power On	$t_{mouse} + t_{LCD} + t_{OCMW} + t_{sysace} + t_{OCMR}$	0.7ms + 1.67ms + 21.6ms + 504.0ms + 1.6ms = 529.6 ms
Mode Config Change	t _{OCMW} + t _{sysace} + t _{OCMR}	21.6ms + 504.0ms + 1.6ms = 527.2ms
Fault Recovery	$t_{OCMW} + t_{SMt} + t_{OCMR}$	21.6ms + 30.0ns+ 1.6ms = 23.2ms

System Performance

• Area Usage for Three Configurations

FPGA Resources	Resources Used				
	Parallel Processing	Low Power	Radiation Tolerant		
Number of Slice Registers	261	102	355		
Number of Slice LUTs	470	194	562		
Number of occupied Slices	187	96	280		
Number of LUT Flip Flop pairs	498	210	635		

Ongoing Work

- Microblaze Implementation
- FPGA Partial Reconfiguration
- Scrubbing

Acknowledgements

- thank you to NASA and the Montana Space Grant Consortium for support of this work

Questions

