DATE 2006

Session 5B: Timing and Noise Analysis

Bus Stuttering : An Encoding Technique To Reduce Inductive Noise In Off-Chip Data Transmission

Authors:

Brock J. LaMeres, Sunil P. Khatri, Agilent Technologies Texas A&M University

Agenda

- Problem Motivation
- Our Solution
- Experimental Results

Why is IC Packaging Important?

• All Electronic Circuitry Resides in a Package

- The package serves many purposes:

- 1) Protection of devices
- 2) Density Translation
- **3) Thermal Dissipation**
- 4) Manufacturing Standardization

Packaging Limits System Performance

March 8, 2006

• IC Design/Fabrication is Outpacing Package Technology

- We're seeing exponential increase in IC transistor performance
- >1.3 Billion transistors on 1 die [Fall IDF-05]

• Packages Have Been Designed for Mechanical Performance

- Electrical performance was not primary consideration
- IC's limited electrical performance
- Package performance was not the bottleneck

• VLSI Performance Exceeds Package Performance

- Packages optimized for mechanical reliability, but still used due to cost
- IC performance far exceeds package performance

• Package Interconnect Contains Parasitic Inductance

- Long interconnect paths

Wire Bond Inductance (~2.8nH)

 $-L = \frac{\Phi}{Area}$

• Package Parasitics Limit Performance

- Excess inductance causes package noise
- Noise limits how fast the package can transmit date

• Aggressive Package Design Helps, but is expensive...

- 95% of VLSI design-starts are wire bonded
- Goal: Extend the life of current packages

QFP – Wire Bond : 4.5nH \rightarrow \$0.22 / pin

BGA – Wire Bond : $3.7nH \rightarrow $0.34 / pin ***$

BGA – Flip-Chip : $1.2nH \rightarrow $0.63 / pin$

Our Solution

"Encode Off-Chip Data to Avoid Inductive Cross-talk"

- Avoid the following cases:
- 1) Excessive switching in the same direction
- 2) Excessive X-talk on a signal when switching
- 3) Excessive X-talk on signal when static

- = reduce ground/power bounce
- = reduce edge degradation
- = reduce glitching

Our Solution

- This results in:
- 1) A subset of vectors is transmitted that avoids inductive X-talk.
- 2) The off-chip bus can now be ran at a higher data rate.
- **3**) The subset of vectors running faster can achieve a higher throughput over the original set of vectors running slower (including overhead).

Bus Stuttering CODEC

• Intermediate States are Inserted Between Noise Causing Transitions

- Stutter states limit the number of simultaneously switching signals
- The source synchronous clock is gated during stutter state

March 8, 2006

"Bus Stuttering"

Bus Stuttering CODEC – Noise Sources

• Simultaneous Switching Noise

Supply Bounce

• Induced Self Voltage

$$V_{self} = L \cdot \sum_{i}^{n} \left(\frac{di_{i}}{dt} \right)$$

<u>Glitching</u>

• Coupling onto Non-Switching Signals

$$V_{couple} = \sum_{1}^{k} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

Edge Degradation

- Coupling onto Switching Signals
- Data Dependent Delay

Bus Stuttering CODEC - Constraints

• For Each Possible Noise Source on the Bus, a Constraint is written:

• Each Constraint is Evaluated to Find Illegal Transitions:

Bus Stuttering CODEC - Algorithm

• Constraints are Evaluated and a Legal Directed Graph is Created

- Directed Graph is Used to Map Transitions Between any Two Vectors - A transition path (which may include stutters) exists between any two vectors if:
 - There exists at least two outgoing edges for each vector $v_s \in G$ (including self-edge)
 - There exists at least two incoming edges for each vector $v_d \in G$ (including self-edge)

Bus Stuttering CODEC - Construction

• Multiple Stutter States can be used

- between 0 and 2^(Wbus-1) stutters can be inserted between any two vectors
- experimental results show that for segments up to 8 bits, more than 3 stutters is rare

• Overhead

- Overhead increases as segments sizes increase
- Still useful since segments greater than 8 bits are rarely used (SPG=8:1:1)

- Circuit Implementation
- 32 pipeline stages used
- pipeline reset after 32 idle states (similar to SRIO, HT, and PCI Express)
- protocol inherently handles pipeline overflow

- **SPICE Simulations**
 - 3 bit segment (SPG=3:1:1)
 - fixed di/dt
 - Maximum noise reduced by limiting simultaneously switching signals

• TSMC 0.13um Synthesis Results

- RTL design, synthesized and mapped
- Segment sizes $2 \rightarrow 8$ implemented
- Logic, delay, and area evaluated

	Bus Size	No	ise Limit
	-	5% (aggressive)	10% (non-aggressive)
Delay (ns)	4	2.02	1.99
	6	2.42	2.38
	8	2.85	2.79
Area (um^2)	4	311k	310k
	6	362k	345k
	8	382k	368k

- Xilinx FPGA, 0.35um Implementation Results
- RTL design implemented
- Xilinx, VirtexIIPro, FPGA

• Xilinx FPGA, 0.35um Implementation Results

- RTL design, implemented
- Logic operation verified
- Noise Reduced from 16% to 4%

(4 bit, SPG=4:1:1)

	Bus Size	Noise Limit	
	-	5% (aggressive) & $10%$ (non-aggressive)	
Delay (ns)	4	4.78	
	6	5.29	
	8	5.89	
FPGA Usage	4	< 1%	
	6	< 1%	
	8	< 1.5%	

Eile Edit Yiew Setup Tools Marke	rs <u>R</u> un/Stop <u>W</u> aveform <u>W</u> indow <u>H</u> elp	8×				
🗅 🖙 🖬 🎒 🚧 🐂 😽 🖊	Г ⋈ Q ℚ ヾ ഈ 拱 ᡂ 					
M1 to M2 = 401.314 ns						
Scale 36.5 ns/div III ±.1± Delay 584 ns III III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
	<u>€12</u>					
Bus/Signal	401.5 ns 438 ns 474.5 ns 511 ns 547.5 ns 584 ns 620.5 ns 657 ns 693.5 ns 730 ns 766.5 ns					
Time	алыраарынаа кская ккая кортальна кстал кст					
🖽 🗓 data_in	12 13 14 15 0 255 0					
Elock	10					
⊞‡ stutter_data_out	10 11 12 13 14 15 3 0 3 15 63 255					
t stutter_clock_out	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0					
💽 Overview 📰 W.	aveform-1					

March 8, 2006

Conclusion

• Packaging Performance is the Largest System Bottleneck

• Stutter Encoding Avoids Worst-Case Noise Patterns

• Performance Improved Even After Considering Encoding Overhead