### Characterization of a Printed Circuit Board Via

#### Brock J. LaMeres

Thesis Defense May 25, 2000

Department of Electrical and Computer Engineering University of Colorado Colorado Springs, CO

# Objective

#### • To Develop an Equivalent Circuit Model for a Printed Circuit Board Via

## Purpose

• To Characterize the Discontinuity Caused by a Via

 To Understand How the Physical Dimensions of a Via Contribute to its Electrical Response

## **Characterization** Approach

- Develop an Equivalent Circuit
- 3D Electromagnetic Field Simulations
- SPICE Simulations
- Time Domain Reflectometry
- Network Analysis

# Printed Circuit Board Via

(Cross Section)



# Printed Circuit Board Via

(Actual Via)



### Equivalent Circuit (Coupled Model)



### Equivalent Circuit (Distributed Model)



### Equivalent Circuit (Lumped Model)



# Equivalent Circuit Response

Perfect Step



· 100ps Guassian Step



#### **3D EM Field Simulations**

(Varying Pad Radius)

#### • Capacitance vs. Pad Radius



#### • Zo vs. Pad Radius







#### **3D EM Field Simulations**

(Varying Cylinder Radius)



550 500 Rpad = +.005", Rgnd = +.010 Rpad = +.006", Rgnd = +.012" Rpad = +.007", Rgnd = +.014" 450 (Hd) 400 K Inductan 350 300 Via 250 200 150 10 12 14 16 18 20 2 6 Cylinder Radius (.001")



• Capacitance vs. Cylinder Radius

#### • Inductance vs. Cylinder Radius

• Zo vs. Cylinder Radius

#### **3D EM Field Simulations**

(Varying Ground Clearance Radius)







• Inductance vs. Ground Clearance Radius

• Zo vs. Ground Clearance Radius



### **Time Domain Reflectometry**

#### (Experimental Setup)



Actual Laboratory Setup

#### **Time Domain Reflectometry**

(Empirical Results)

• TDR varying Pad Radius (Zo decreases)

• TDR varying Cylinder Radius (Zo decreases)

• TDR varying Ground Clearance Radius (Zo increases)







## Network Analysis

#### (Experimental Setup)



Circuit of Experimental Setup

Actual Laboratory Setup



#### Network Analysis

(Empirical Data)

• |S<sub>11</sub>| (dB) (reflected) varying cylinder radius



• |S<sub>21</sub>| (dB) (transmitted) varying cylinder radius



#### Simulation vs. Empirical Data

(Time Domain Reflectometry)

#### • Pad Radius Example



#### • Ground Clearance Radius Example







#### Simulation vs. Empirical Data

(Network Analysis)



#### Effect of Via on S-Parameters

(including trace and pcb connectors)



• |S<sub>11</sub>| (dB) (with and without via)

• |S<sub>21</sub>| (dB) (with and without via)

## Design Guidelines

(for minimizing the via discontinuity)

[1] Use the minimum size drill bit for creating the via cylinder.

[2] Use the minimum size via pad radius.

[3] Do not use the minimum size ground clearance radius.

[4] Use the thinnest printed circuit board possible.

[5] Place ground vias around the signal via when passing through multiple ground planes.

## Conclusion

• An Equivalent Circuit was presented that can accurately characterize a printed circuit board via.

 When used with 3D EM Field Simulation, the actual response of the via can be predicted.

### Characterization of a Printed Circuit Board Via

Brock J. LaMeres

### Questions or Comments?

Department of Electrical and Computer Engineering University of Colorado Colorado Springs, CO